5ljn Citations

SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling.

Abstract

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.

Reviews - 5ljn mentioned but not cited (2)

  1. Linear ubiquitin chains: enzymes, mechanisms and biology. Rittinger K, Ikeda F. Open Biol 7 170026 (2017)
  2. Molecular basis for specificity of the Met1-linked polyubiquitin signal. Elliott PR. Biochem Soc Trans 44 1581-1602 (2016)


Reviews citing this publication (46)

  1. Mechanisms of Deubiquitinase Specificity and Regulation. Mevissen TET, Komander D. Annu Rev Biochem 86 159-192 (2017)
  2. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Physiol Rev 99 1765-1817 (2019)
  3. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Yuan J, Amin P, Ofengeim D. Nat Rev Neurosci 20 19-33 (2019)
  4. Breaking the chains: deubiquitylating enzyme specificity begets function. Clague MJ, Urbé S, Komander D. Nat Rev Mol Cell Biol 20 338-352 (2019)
  5. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Afonina IS, Zhong Z, Karin M, Beyaert R. Nat Immunol 18 861-869 (2017)
  6. Necroptosis in development and diseases. Shan B, Pan H, Najafov A, Yuan J. Genes Dev 32 327-340 (2018)
  7. Role of the NFκB-signaling pathway in cancer. Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Onco Targets Ther 11 2063-2073 (2018)
  8. Targeting RIPK1 for the treatment of human diseases. Degterev A, Ofengeim D, Yuan J. Proc Natl Acad Sci U S A 116 9714-9722 (2019)
  9. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Lork M, Verhelst K, Beyaert R. Cell Death Differ 24 1172-1183 (2017)
  10. Principles of Ubiquitin-Dependent Signaling. Oh E, Akopian D, Rape M. Annu Rev Cell Dev Biol 34 137-162 (2018)
  11. The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues. Webster JD, Vucic D. Front Cell Dev Biol 8 365 (2020)
  12. Ubiquitination in the regulation of inflammatory cell death and cancer. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Cell Death Differ 28 591-605 (2021)
  13. Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Witt A, Vucic D. Cell Death Differ 24 1160-1171 (2017)
  14. Mechanisms of regulation and diversification of deubiquitylating enzyme function. Leznicki P, Kulathu Y. J Cell Sci 130 1997-2006 (2017)
  15. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns. Walden H, Rittinger K. Nat Struct Mol Biol 25 440-445 (2018)
  16. Inhibitory feedback control of NF-κB signalling in health and disease. Prescott JA, Mitchell JP, Cook SJ. Biochem J 478 2619-2664 (2021)
  17. Linear ubiquitination at a glance. Spit M, Rieser E, Walczak H. J Cell Sci 132 jcs208512 (2019)
  18. The regulation of necroptosis by post-translational modifications. Meng Y, Sandow JJ, Czabotar PE, Murphy JM. Cell Death Differ 28 861-883 (2021)
  19. Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification. Dittmar G, Winklhofer KF. Front Chem 7 915 (2019)
  20. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Oikawa D, Sato Y, Ito H, Tokunaga F. Int J Mol Sci 21 E3381 (2020)
  21. Roles of ubiquitin in autophagy and cell death. Gómez-Díaz C, Ikeda F. Semin Cell Dev Biol 93 125-135 (2019)
  22. The Met1-linked ubiquitin machinery in inflammation and infection. Fiil BK, Gyrd-Hansen M. Cell Death Differ 28 557-569 (2021)
  23. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Newton K. Cold Spring Harb Perspect Biol 12 a036368 (2020)
  24. Linear ubiquitin chain-binding domains. Fennell LM, Rahighi S, Ikeda F. FEBS J 285 2746-2761 (2018)
  25. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Zhang X, Wei C, Liang H, Han L. Front Oncol 11 587554 (2021)
  26. The ubiquitin ligation machinery in the defense against bacterial pathogens. Tripathi-Giesgen I, Behrends C, Alpi AF. EMBO Rep 22 e52864 (2021)
  27. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Jahan AS, Elbæk CR, Damgaard RB. Cell Death Differ 28 473-492 (2021)
  28. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Weinelt N, van Wijk SJL. Cell Death Differ 28 493-504 (2021)
  29. Regulatory mechanisms of RIPK1 in cell death and inflammation. Liu Z, Chan FK. Semin Cell Dev Biol 109 70-75 (2021)
  30. Roles of necroptosis in alcoholic liver disease and hepatic pathogenesis. Zhou Y, Wu R, Wang X, Bao X, Lu C. Cell Prolif 55 e13193 (2022)
  31. SPATA2: more than a missing link. Schlicher L, Brauns-Schubert P, Schubert F, Maurer U. Cell Death Differ 24 1142-1147 (2017)
  32. Non-lysine ubiquitylation: Doing things differently. Kelsall IR. Front Mol Biosci 9 1008175 (2022)
  33. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Fuseya Y, Iwai K. Cells 10 2706 (2021)
  34. The therapeutic potential of targeting regulated non-apoptotic cell death. Hadian K, Stockwell BR. Nat Rev Drug Discov 22 723-742 (2023)
  35. Genetic Testing in CYLD Cutaneous Syndrome: An Update. Nagy N, Dubois A, Szell M, Rajan N. Appl Clin Genet 14 427-444 (2021)
  36. The role of SPATA2 in TNF signaling, cancer, and spermatogenesis. Masola V, Greco N, Tozzo P, Caenazzo L, Onisto M. Cell Death Dis 13 977 (2022)
  37. LUBAC: a new player in polyglucosan body disease. Aboujaoude A, Minassian B, Mitra S. Biochem Soc Trans 49 2443-2454 (2021)
  38. Deubiquitinases in cell death and inflammation. Newton K, Gitlin AD. Biochem J 479 1103-1119 (2022)
  39. CYLD in health and disease. Marín-Rubio JL, Raote I, Inns J, Dobson-Stone C, Rajan N. Dis Model Mech 16 dmm050093 (2023)
  40. Deubiquitination complex platform: A plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Fang YZ, Jiang L, He Q, Cao J, Yang B. Acta Pharm Sin B 13 2955-2962 (2023)
  41. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, Tokunaga F. Front Mol Biosci 10 1089213 (2023)
  42. Diverse ubiquitin codes in the regulation of inflammatory signaling. Ikeda F. Proc Jpn Acad Ser B Phys Biol Sci 96 431-439 (2020)
  43. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Front Cell Dev Biol 10 944460 (2022)
  44. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Li J, Liu S, Li S. Cell Commun Signal 21 340 (2023)
  45. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Clucas J, Meier P. Nat Rev Mol Cell Biol 24 835-852 (2023)
  46. The Emerging Role of Deubiquitinases in Cell Death. Zhou Z, Song X, Kang R, Tang D. Biomolecules 12 1825 (2022)

Articles citing this publication (45)

  1. MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, Wicky John S, Liccardi G, Chau D, Murphy JM, Brumatti G, Feltham R, Pasparakis M, Silke J, Meier P. Mol Cell 66 698-710.e5 (2017)
  2. Tumor immune evasion arises through loss of TNF sensitivity. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, Pijpers L, Michie J, Brown KK, Knight DA, Sutton V, Beavis PA, Voskoboinik I, Darcy PK, Silke J, Trapani JA, Johnstone RW, Oliaro J. Sci Immunol 3 eaar3451 (2018)
  3. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, Kupka S, Shimizu Y, Taraborrelli L, Spit M, Sprick MR, Walczak H. EMBO J 36 1147-1166 (2017)
  4. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. Damgaard RB, Elliott PR, Swatek KN, Maher ER, Stepensky P, Elpeleg O, Komander D, Berkun Y. EMBO Mol Med 11 e9324 (2019)
  5. SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Wei R, Xu LW, Liu J, Li Y, Zhang P, Shan B, Lu X, Qian L, Wu Z, Dong K, Zhu H, Pan L, Yuan J, Pan H. Genes Dev 31 1162-1176 (2017)
  6. PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R, Niu X, Wang Q, Wu X, Liu Z, Chen LF, Qin J, Su B. EMBO J 39 e102201 (2020)
  7. OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer. Damgaard RB, Jolin HE, Allison MED, Davies SE, Titheradge HL, McKenzie ANJ, Komander D. Cell Death Differ 27 1457-1474 (2020)
  8. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, Picaud S, Ward JA, Rogers C, Suebsuwong C, Nikhar S, Cuny GD, Huber KV, Filippakopoulos P, Bullock AN, Degterev A, Gyrd-Hansen M. EMBO J 37 e99372 (2018)
  9. M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila. Aalto AL, Mohan AK, Schwintzer L, Kupka S, Kietz C, Walczak H, Broemer M, Meinander A. Cell Death Differ 26 860-876 (2019)
  10. A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN. Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F, Krappmann D. Cell Chem Biol 24 1299-1313.e7 (2017)
  11. The linear ubiquitin chain assembly complex (LUBAC) generates heterotypic ubiquitin chains. Rodriguez Carvajal A, Grishkovskaya I, Gomez Diaz C, Vogel A, Sonn-Segev A, Kushwah MS, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P, Clausen T, Haselbach D, Ikeda F. Elife 10 e60660 (2021)
  12. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP. Goto E, Tokunaga F. Biochem Biophys Res Commun 485 152-159 (2017)
  13. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Panda S, Gekara NO. Nat Commun 9 4654 (2018)
  14. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Elliott PR, Leske D, Wagstaff J, Schlicher L, Berridge G, Maslen S, Timmermann F, Ma B, Fischer R, Freund SMV, Komander D, Gyrd-Hansen M. Cell Rep 37 109777 (2021)
  15. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. Cell Death Dis 9 261 (2018)
  16. SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Kasirer-Friede A, Tjahjono W, Eto K, Shattil SJ. Proc Natl Acad Sci U S A 116 4983-4988 (2019)
  17. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Criscitiello MF, Kraev I, Lange S. Mol Immunol 117 37-53 (2020)
  18. Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Zhao J, Zhao J, Xu G, Wang Z, Gao J, Cui S, Liu J. Biol Reprod 97 497-513 (2017)
  19. Spata2 Knockdown Exacerbates Brain Inflammation via NF-κB/P38MAPK Signaling and NLRP3 Inflammasome Activation in Cerebral Ischemia/Reperfusion Rats. Ren Y, Jiang J, Jiang W, Zhou X, Lu W, Wang J, Luo Y. Neurochem Res 46 2262-2275 (2021)
  20. Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Martino L, Brown NR, Masino L, Esposito D, Rittinger K. Sci Rep 8 68 (2018)
  21. SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets. Bellucci G, Ballerini C, Mechelli R, Bigi R, Rinaldi V, Reniè R, Buscarinu MC, Baranzini SE, Madireddy L, Matarese G, Salvetti M, Ristori G. F1000Res 9 992 (2020)
  22. The ubiquitin interacting motifs of USP37 act on the proximal Ub of a di-Ub chain to enhance catalytic efficiency. Manczyk N, Veggiani G, Teyra J, Strilchuk AW, Sidhu SS, Sicheri F. Sci Rep 9 4119 (2019)
  23. Compound heterozygous variants in OTULIN are associated with fulminant atypical late-onset ORAS. Zinngrebe J, Moepps B, Monecke T, Gierschik P, Schlichtig F, Barth TFE, Strauß G, Boldrin E, Posovszky C, Schulz A, Beringer O, Rieser E, Jacobsen EM, Lorenz MR, Schwarz K, Pannicke U, Walczak H, Niessing D, Schuetz C, Fischer-Posovszky P, Debatin KM. EMBO Mol Med 14 e14901 (2022)
  24. LUBAC-mediated linear ubiquitination: a crucial regulator of immune signaling. Iwai K. Proc Jpn Acad Ser B Phys Biol Sci 97 120-133 (2021)
  25. Tumor necrosis factor receptor modulator spermatogenesis-associated protein 2 is a novel predictor of outcome in ovarian cancer. Wieser V, Tsibulak I, Degasper C, Welponer H, Leitner K, Parson W, Zeimet AG, Marth C, Fiegl H. Cancer Sci 110 1117-1126 (2019)
  26. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Li R, Yang X. Genome Biol 23 124 (2022)
  27. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. Sundberg JP, Pratt CH, Goodwin LP, Silva KA, Kennedy VE, Potter CS, Dunham A, Sundberg BA, HogenEsch H. PLoS One 15 e0235295 (2020)
  28. A proteomic perspective on TNF-mediated signalling and cell death. Tanzer MC. Biochem Soc Trans 50 13-20 (2022)
  29. Serine 165 phosphorylation of SHARPIN regulates the activation of NF-κB. Thys A, Trillet K, Rosińska S, Gayraud A, Douanne T, Danger Y, Renaud CCN, Antigny L, Lavigne R, Pineau C, Com E, Vérité F, Gavard J, Bidère N. iScience 24 101939 (2021)
  30. Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Blueggel M, van den Boom J, Meyer H, Bayer P, Beuck C. Biomolecules 9 E876 (2019)
  31. Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation. Douglas T, Saleh M. J Biol Chem 295 5216-5228 (2020)
  32. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Proc Natl Acad Sci U S A 118 e2001602118 (2021)
  33. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Griewahn L, Köser A, Maurer U. Front Cell Dev Biol 7 117 (2019)
  34. TLRs Go Linear - On the Ubiquitin Edge. Zinngrebe J, Walczak H. Trends Mol Med 23 296-309 (2017)
  35. The B-box module of CYLD is responsible for its intermolecular interaction and cytoplasmic localization. Xie S, Chen M, Gao S, Zhong T, Zhou P, Li D, Zhou J, Gao J, Liu M. Oncotarget 8 50889-50895 (2017)
  36. Novel biochemical, structural, and systems insights into inflammatory signaling revealed by contextual interaction proteomics. Ciuffa R, Uliana F, Uliana F, Mannion J, Mehnert M, Tenev T, Marulli C, Satanowski A, Keller LML, Rodilla Ramírez PN, Ori A, Gstaiger M, Meier P, Aebersold R. Proc Natl Acad Sci U S A 119 e2117175119 (2022)
  37. Site-specific ubiquitination of the E3 ligase HOIP regulates apoptosis and immune signaling. Fennell LM, Gomez Diaz C, Deszcz L, Kavirayani A, Hoffmann D, Yanagitani K, Schleiffer A, Mechtler K, Hagelkruys A, Penninger J, Ikeda F. EMBO J 39 e103303 (2020)
  38. Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway. Oikawa D, Hatanaka N, Suzuki T, Tokunaga F. Front Immunol 11 601926 (2020)
  39. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Erol A. Cancer Manag Res 14 2339-2356 (2022)
  40. Necroptosis at a glance. Kang K, Park C, Chan FK. J Cell Sci 135 jcs260091 (2022)
  41. SPATA2 suppresses epithelial-mesenchymal transition to inhibit metastasis and radiotherapy sensitivity in non-small cell lung cancer via impairing DVL1/β-catenin signaling. Ji H, Zhang L, Zou M, Sun Y, Dong X, Mi Z, Meng M, Yuan Z, Wu Z. Thorac Cancer 14 969-982 (2023)
  42. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. Dis Model Mech 16 dmm049762 (2023)
  43. Identification of a miRNA-mRNA regulatory network for post-stroke depression: a machine-learning approach. Qiu H, Shen L, Shen Y, Mao Y. Front Neurol 14 1096911 (2023)
  44. SPATA2 and CYLD inhibit T cell infiltration into colorectal cancer via regulation of IFN-γ/STAT1 axis. Tan TG, Zybina Y, McKenna C, Olow A, Rukmini SJ, Wong MT, Sadekova S, Chackerian A, Bauché D. Front Oncol 12 1016307 (2022)
  45. TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation. Kim E, Cho H, Lee G, Baek H, Lee IY, Choi EJ. Mol Cells 46 430-440 (2023)