5kic

X-ray diffraction
2.7Å resolution

Long-sought stabilization of berkelium(IV) in solution: An anomaly within the heavy actinide series

Released:

Function and Biology Details

Reactions catalysed:
Endonucleolytic cleavage at a junction such as a reciprocal single-stranded crossover between two homologous DNA duplexes (Holliday junction)
Phosphoenolpyruvate + D-erythrose 4-phosphate + H(2)O = 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate + phosphate
A phosphate monoester + H(2)O = an alcohol + phosphate
ATP + kanamycin = ADP + kanamycin 3'-phosphate
dUTP + H(2)O = dUMP + diphosphate
Purine deoxynucleoside + phosphate = purine + 2'-deoxy-alpha-D-ribose 1-phosphate
Uridine + phosphate = uracil + alpha-D-ribose 1-phosphate 
2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol = 2-C-methyl-D-erythritol 2,4-cyclodiphosphate + CMP
Hydrolysis of terminal, non-reducing branched (1->3)-alpha-D-galactosidic residues, producing free D-galactose
ATP + a protein = ADP + a phosphoprotein
S-adenosyl-L-methionine + pseudouridine(1915) in 23S rRNA = S-adenosyl-L-homocysteine + N(3)-methylpseudouridine(1915) in 23S rRNA
UDP-N-acetyl-alpha-D-glucosamine = UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-hex-4-ulose + H(2)O
Geranyl diphosphate = gamma-terpinene + diphosphate
3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholanate + NAD(+) = 3-alpha,12-alpha-dihydroxy-7-oxo-5-beta-cholanate + NADH
Release of N-terminal proline from a peptide.
Release of an N-terminal amino acid, Xaa-|-Yaa-, in which Xaa is preferably Leu, but may be other amino acids including Pro although not Arg or Lys, and Yaa may be Pro. Amino acid amides and methyl esters are also readily hydrolyzed, but rates on arylamides are exceedingly low.
6-phospho-D-gluconate + NADP(+) = D-ribulose 5-phosphate + CO(2) + NADPH
1-haloalkane + H(2)O = a primary alcohol + halide
Acts on substrates that are at least partially unfolded. The cleavage site P1 residue is normally between a pair of hydrophobic residues, such as Val-|-Val
ATP-dependent cleavage of peptide bonds with broad specificity.
Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
Diphosphate + H(2)O = 2 phosphate
L-lysine + NADPH + O(2) = N(6)-hydroxy-L-lysine + NADP(+) + H(2)O
N(1)-methylguanine(37) in tRNA(Phe) + pyruvate + S-adenosyl-L-methionine = 4-demethylwyosine(37) in tRNA(Phe) + L-methionine + 5'-deoxyadenosine + CO(2) + H(2)O
4 Fe(2+) + 4 H(+) + O(2) = 4 Fe(3+) + 2 H(2)O
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
4 benzenediol + O(2) = 4 benzosemiquinone + 2 H(2)O
L-asparagine + H(2)O = L-aspartate + NH(3)
(1a) L-cysteine + [enzyme]-cysteine = L-alanine + [enzyme]-S-sulfanylcysteine
2-lysophosphatidylcholine + H(2)O = glycerophosphocholine + a carboxylate
(1a) S-adenosyl-L-methionine + [protein]-L-arginine = S-adenosyl-L-homocysteine + [protein]-N(omega)-methyl-L-arginine
Triacylglycerol + H(2)O = diacylglycerol + a carboxylate
Acyl-[acyl-carrier-protein] + malonyl-[acyl-carrier-protein] = 3-oxoacyl-[acyl-carrier-protein] + CO(2) + [acyl-carrier-protein]
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N(6)-ubiquitinyl-[acceptor protein]-L-lysine
(1a) S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [HECT-type E3 ubiquitin transferase]-L-cysteine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + S-ubiquitinyl-[HECT-type E3 ubiquitin transferase]-L-cysteine
4-phosphonooxy-L-threonine + 2-oxoglutarate = (3R)-3-hydroxy-2-oxo-4-phosphonooxybutanoate + L-glutamate
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
1-(5-phospho-beta-D-ribosyl)-5-((5-phospho-beta-D-ribosylamino)methylideneamino)imidazole-4-carboxamide = 5-((5-phospho-1-deoxy-D-ribulos-1-ylamino)methylideneamino)-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide
Hydrolysis of (1->4)-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins
2 glutathione + ROOH = glutathione disulfide + H(2)O + ROH
ATP + RNA(n) = diphosphate + RNA(n+1)
Endopeptidase with a preference for cleavage when the P1 position is occupied by Glu-|- and the P1' position is occupied by Gly-|-
N-acetyl-O-acetylneuraminate + H(2)O = N-acetylneuraminate + acetate
ATP + H(2)O + cellular protein(Side 1) = ADP + phosphate + cellular protein(Side 2)
(S)-dihydroorotate + fumarate = orotate + succinate
An acyl-[acyl-carrier protein] + NAD(+) = a trans-2,3-dehydroacyl-[acyl-carrier protein] + NADH
NTP + H(2)O = NDP + phosphate
ATP + H(2)O + 4 H(+)(Side 1) = ADP + phosphate + 4 H(+)(Side 2)
(Polyphosphate)(n) + H(2)O = (polyphosphate)(n-1) + phosphate
dTDP-4-dehydro-6-deoxy-alpha-D-glucose = dTDP-4-dehydro-beta-L-rhamnose
N-(5-phospho-beta-D-ribosyl)anthranilate = 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1)
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate
An aldehyde + NAD(P)(+) + H(2)O = a carboxylate + NAD(P)H
ATP + succinate + CoA = ADP + phosphate + succinyl-CoA
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
1-alkyl-2-acetyl-sn-glycero-3-phosphocholine + H(2)O = 1-alkyl-sn-glycero-3-phosphocholine + acetate
A beta-lactam + H(2)O = a substituted beta-amino acid
3'-phosphoadenylyl sulfate + a phenol = adenosine 3',5'-bisphosphate + an aryl sulfate
2 3-phospho-D-glycerate + 2 H(+) = D-ribulose 1,5-bisphosphate + CO(2) + H(2)O
N-acetyl-D-glucosamine 6-phosphate + H(2)O = D-glucosamine 6-phosphate + acetate
RX + glutathione = HX + R-S-glutathione
5,10-methylenetetrahydrofolate + dUMP = dihydrofolate + dTMP
Angiotensin II + H(2)O = angiotensin-(1-7) + L-phenylalanine
ATP = 3',5'-cyclic AMP + diphosphate
D-ribose 5-phosphate = D-ribulose 5-phosphate
Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-Casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are hydrolyzed (such as succinyl-Leu-Tyr-|-NHMec; and Leu-Tyr-Leu-|-Tyr-Trp, in which cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp bonds also occurs).
(1a) [enzyme]-L-histidine + 2,3-bisphospho-D-glycerate = [enzyme]-N(tau)-phospho-L-histidine + 2/3-phospho-D-glycerate
Autocatalytic release of the core protein from the N-terminus of the togavirus structural polyprotein by hydrolysis of a -Trp-|-Ser- bond.
Selective hydrolysis of -Xaa-Xaa-|-Yaa- bonds in which each of the Xaa can be either Arg or Lys and Yaa can be either Ser or Ala.
A phenyl acetate + H(2)O = a phenol + acetate
Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
Hydrolyzes glutaminyl bonds, and activity is further restricted by preferences for the amino acids in P6 - P1' that vary with the species of potyvirus, e.g. Glu-Xaa-Xaa-Tyr-Xaa-Gln-|-(Ser or Gly) for the enzyme from tobacco etch virus. The natural substrate is the viral polyprotein, but other proteins and oligopeptides containing the appropriate consensus sequence are also cleaved.
Hydrolyzes a Gly-|-Gly bond at its own C-terminus, commonly in the sequence -Tyr-Xaa-Val-Gly-|-Gly, in the processing of the potyviral polyprotein.
Cutin + H(2)O = cutin monomers
10-formyltetrahydrofolate + UDP-4-amino-4-deoxy-beta-L-arabinose = 5,6,7,8-tetrahydrofolate + UDP-4-deoxy-4-formamido-beta-L-arabinose
Peptidylproline (omega=180) = peptidylproline (omega=0)
Choline = trimethylamine + acetaldehyde
2 bilirubin + O(2) = 2 biliverdin + 2 H(2)O
S-adenosyl-L-methionine + a 5'-(N(7)-methyl 5'-triphosphoguanosine)-(ribonucleotide)-[mRNA] = S-adenosyl-L-homocysteine + a 5'-(N(7)-methyl 5'-triphosphoguanosine)-(2'-O-methyl-ribonucleotide)-[mRNA]
[a protein]-serine/threonine phosphate + H(2)O = [a protein]-serine/threonine + phosphate
Endohydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans
Endohydrolysis of (1->4)-alpha-D-glucosidic linkages in polysaccharides containing three or more (1->4)-alpha-linked D-glucose units
Hydrolysis of terminal (1->4)-linked alpha-D-glucose residues successively from non-reducing ends of the chains with release of beta-D-glucose
D-fructose 1,6-bisphosphate + H(2)O = D-fructose 6-phosphate + phosphate
Hydrolysis of terminal non-reducing alpha-L-rhamnose residues in alpha-L-rhamnosides
N-carbamoylputrescine + H(2)O = putrescine + CO(2) + NH(3)
Geranyl diphosphate = alpha-terpinene + diphosphate
L-lysine = cadaverine + CO(2)
Eliminative cleavage of alginate to give oligosaccharides with 4-deoxy-alpha-L-erythro-hex-4-enuronosyl groups at their non-reducing ends and beta-D-mannuronate at their reducing end.
Eliminative cleavage of (1->4)-alpha-D-galacturonan to give oligosaccharides with 4-deoxy-alpha-D-galact-4-enuronosyl groups at their non-reducing ends
2-deoxy-D-ribose 5-phosphate = D-glyceraldehyde 3-phosphate + acetaldehyde
ATP + thymidine = ADP + thymidine 5'-phosphate
A 4-O-methyl-D-glucopyranuronate ester + H(2)O = 4-O-methyl-D-glucuronic acid + an alcohol
Thiol-dependent hydrolysis of ester, thioester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
(R)-pantoate + NADP(+) = 2-dehydropantoate + NADPH
Preferential cleavage at the carboxyl of hydrophobic amino acids, but fails to cleave 15-Leu-|-Tyr-16, 16-Tyr-|-Leu-17 and 24-Phe-|-Phe-25 of insulin B chain. Activates trypsinogen, and degrades keratin.
Oleoyl-[acyl-carrier-protein] + H(2)O = [acyl-carrier-protein] + oleate
Hydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose and similar substrates, releasing cellobiose from the reducing ends of the chains.
L-arginine + 2-oxoglutarate + O(2) = (3S)-3-hydroxy-L-arginine + succinate + CO(2)
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Acetyl-CoA + a 2-deoxystreptamine antibiotic = CoA + N(3)-acetyl-2-deoxystreptamine antibiotic
(S)-lactate + NAD(+) = pyruvate + NADH
ATP + AMP = 2 ADP
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine
A (3R)-3-hydroxyacyl-[acyl-carrier-protein] + a UDP-3-O-((3R)-hydroxyacyl)-alpha-D-glucosamine = a UDP-2-N,3-O-bis((3R)-3-hydroxyacyl)-alpha-D-glucosamine + a holo-[acyl-carrier-protein]
Beta-D-ribopyranose = beta-D-ribofuranose
NAD(+) + protein-L-arginine = nicotinamide + N(omega)-(ADP-D-ribosyl)-protein-L-arginine
N(2)-acetyl-L-ornithine + L-glutamate = L-ornithine + N-acetyl-L-glutamate
Selective cleavage of Tyr-|-Gly bond in picornavirus polyprotein.
S-adenosyl-L-methionine + guanosine(2251) in 23S rRNA = S-adenosyl-L-homocysteine + 2'-O-methylguanosine(2251) in 23S rRNA 
((1->2)-beta-D-glucosyl)(n) + H(2)O = sophorose + ((1->2)-beta-D-glucosyl)(n-2)
2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
Pyruvate + L-aspartate-4-semialdehyde = (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate + H(2)O
A phosphatidylcholine + H(2)O = 1,2-diacyl-sn-glycerol + phosphocholine
ATP + L-tyrosine + tRNA(Tyr) = AMP + diphosphate + L-tyrosyl-tRNA(Tyr)
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O
L-histidine-[translation elongation factor 2] + S-adenosyl-L-methionine = 2-((3S)-3-amino-3-carboxypropyl)-L-histidine-[translation elongation factor 2] + S-methyl-5'-thioadenosine
Palmitoyl-CoA + H(2)O = CoA + palmitate
AMP + H(2)O = D-ribose 5-phosphate + adenine
L-homoserine + NAD(P)(+) = L-aspartate 4-semialdehyde + NAD(P)H
ATP + H(2)O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
5'-deoxyadenosine + H(2)O = 5-deoxy-D-ribose + adenine
Hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Hydrolysis of terminal non-reducing beta-D-galactose residues in beta-D-galactosides
ATP + L-histidine + tRNA(His) = AMP + diphosphate + L-histidyl-tRNA(His)
ATP + H(2)O = ADP + phosphate
5,6,7,8-tetrahydrofolate + NADP(+) = 7,8-dihydrofolate + NADPH
L-lysyl-tRNA(Lys) + phosphatidylglycerol = tRNA(Lys) + 3-O-L-lysyl-1-O-phosphatidylglycerol
The C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken by a beta-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate
2-iminobutanoate + H(2)O = 2-oxobutanoate + NH(3)
UDP-alpha-D-glucuronate + NAD(+) = UDP-beta-L-threo-pentapyranos-4-ulose + CO(2) + NADH
Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides.
Biochemical function:
Biological process:
Cellular component:

Structure analysis Details

Assembly composition:
monomeric (preferred)
Entry contents:
1 distinct polypeptide molecule
Macromolecule:
Neutrophil gelatinase-associated lipocalin Chains: A, B, C
Molecule details ›
Chains: A, B, C
Length: 180 amino acids
Theoretical weight: 20.7 KDa
Source organism: Homo sapiens
Expression system: Escherichia coli
UniProt:
  • Canonical: P80188 (Residues: 21-198; Coverage: 100%)
Gene names: HNL, LCN2, NGAL
Sequence domains: Lipocalin / cytosolic fatty-acid binding protein family
Structure domains: Lipocalin

Ligands and Environments

No modified residues

Experiments and Validation Details

Entry percentile scores
X-ray source: ALS BEAMLINE 5.0.1
Spacegroup: P41212
Unit cell:
a: 119.574Å b: 119.574Å c: 108.839Å
α: 90° β: 90° γ: 90°
R-values:
R R work R free
0.207 0.205 0.242
Expression system: Escherichia coli