5ka0 Citations

Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

Mol Cell 65 644-658.e5 (2017)
Related entries: 5k9v, 5k9w, 5ka1, 5ka2, 5ka3, 5ka4, 5ka7, 5ka8, 5ka9, 5kaa, 5kab, 5kac, 5kad

Cited: 53 times
EuropePMC logo PMID: 28212750

Abstract

Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.

Articles - 5ka0 mentioned but not cited (2)

  1. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Choy MS, Li Y, Machado LESF, Kunze MBA, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W. Mol Cell 65 644-658.e5 (2017)
  2. research-article Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Woods VA, Abzalimov RR, Keedy DA. bioRxiv 2023.07.12.548582 (2023)


Reviews citing this publication (6)

  1. Turn and Face the Strange: A New View on Phosphatases. Köhn M. ACS Cent Sci 6 467-477 (2020)
  2. Harnessing Conformational Plasticity to Generate Designer Enzymes. Crean RM, Gardner JM, Kamerlin SCL. J Am Chem Soc 142 11324-11342 (2020)
  3. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Int J Mol Sci 23 7027 (2022)
  4. Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Tokunaga Y, Viennet T, Arthanari H, Takeuchi K. Int J Mol Sci 21 E1829 (2020)
  5. Recent applications of computational methods to allosteric drug discovery. Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Front Mol Biosci 9 1070328 (2022)
  6. The influence of random-coil chemical shifts on the assessment of structural propensities in folded proteins and IDPs. Kovács D, Bodor A. RSC Adv 13 10182-10203 (2023)

Articles citing this publication (45)

  1. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 e36307 (2018)
  2. A Biophysical Perspective on Enzyme Catalysis. Agarwal PK. Biochemistry 58 438-449 (2019)
  3. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Pádua RAP, Sun Y, Marko I, Pitsawong W, Stiller JB, Otten R, Kern D. Nat Commun 9 4507 (2018)
  4. Dynamic activation and regulation of the mitogen-activated protein kinase p38. Kumar GS, Clarkson MW, Kunze MBA, Granata D, Wand AJ, Lindorff-Larsen K, Page R, Peti W. Proc Natl Acad Sci U S A 115 4655-4660 (2018)
  5. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP. J Mol Biol 429 2360-2372 (2017)
  6. Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B. Cui DS, Lipchock JM, Brookner D, Loria JP. J Am Chem Soc 141 12634-12647 (2019)
  7. Loop Dynamics and Enzyme Catalysis in Protein Tyrosine Phosphatases. Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. J Am Chem Soc 143 3830-3845 (2021)
  8. The structural basis of PTEN regulation by multi-site phosphorylation. Dempsey DR, Viennet T, Iwase R, Park E, Henriquez S, Chen Z, Jeliazkov JR, Palanski BA, Phan KL, Coote P, Gray JJ, Eck MJ, Gabelli SB, Arthanari H, Cole PA. Nat Struct Mol Biol 28 858-868 (2021)
  9. A Comprehensive Analysis of Anion-Quadrupole Interactions in Protein Structures. Chakravarty S, Ung AR, Moore B, Shore J, Alshamrani M. Biochemistry 57 1852-1867 (2018)
  10. Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System. Capdevila DA, Edmonds KA, Campanello GC, Wu H, Gonzalez-Gutierrez G, Giedroc DP. J Am Chem Soc 140 9108-9119 (2018)
  11. Minimally disruptive optical control of protein tyrosine phosphatase 1B. Hongdusit A, Zwart PH, Sankaran B, Fox JM. Nat Commun 11 788 (2020)
  12. Conserved conformational dynamics determine enzyme activity. Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Sci Adv 8 eabo5546 (2022)
  13. Cooperative dynamics across distinct structural elements regulate PTP1B activity. Torgeson KR, Clarkson MW, Kumar GS, Page R, Peti W. J Biol Chem 295 13829-13837 (2020)
  14. The mode of action of the Protein tyrosine phosphatase 1B inhibitor Ertiprotafib. Kumar GS, Page R, Peti W. PLoS One 15 e0240044 (2020)
  15. Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains. Caillet-Saguy C, Toto A, Guerois R, Maisonneuve P, di Silvio E, Sawyer K, Gianni S, Wolff N. Sci Rep 7 7875 (2017)
  16. The catalytic activity of TCPTP is auto-regulated by its intrinsically disordered tail and activated by Integrin alpha-1. Singh JP, Li Y, Chen YY, Hsu SD, Page R, Peti W, Meng TC. Nat Commun 13 94 (2022)
  17. A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis. Jiao W, Fan Y, Blackmore NJ, Parker EJ. J Biol Chem 295 6252-6262 (2020)
  18. Native SAD phasing at room temperature. Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Acta Crystallogr D Struct Biol 78 986-996 (2022)
  19. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. J Biol Chem 295 4923-4936 (2020)
  20. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Hjortness MK, Riccardi L, Hongdusit A, Ruppe S, Zhao M, Kim EY, Zwart PH, Sankaran B, Arthanari H, Sousa MC, De Vivo M, Fox JM. Biochemistry 57 5886-5896 (2018)
  21. Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases. Shen R, Crean RM, Olsen KJ, Corbella M, Calixto AR, Richan T, Brandão TAS, Berry RD, Tolman A, Loria JP, Johnson SJ, Kamerlin SCL, Hengge AC. Chem Sci 13 13524-13540 (2022)
  22. Mechanistic roles of tyrosine phosphorylation in reversible amyloids, autoinhibition, and endosomal membrane association of ALIX. Elias RD, Ramaraju B, Deshmukh L. J Biol Chem 297 101328 (2021)
  23. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. Skaist Mehlman T, Biel JT, Azeem SM, Nelson ER, Hossain S, Dunnett L, Paterson NG, Douangamath A, Talon R, Axford D, Orins H, von Delft F, Keedy DA. Elife 12 e84632 (2023)
  24. Allosteric Inhibition of PTP1B by a Nonpolar Terpenoid. Friedman AJ, Liechty ET, Kramer L, Sarkar A, Fox JM, Shirts MR. J Phys Chem B 126 8427-8438 (2022)
  25. Biochemical, Enzymatic, and Computational Characterization of Recurrent Somatic Mutations of the Human Protein Tyrosine Phosphatase PTP1B in Primary Mediastinal B Cell Lymphoma. Liu R, Sun Y, Berthelet J, Bui LC, Xu X, Viguier M, Dupret JM, Deshayes F, Rodrigues Lima F. Int J Mol Sci 23 7060 (2022)
  26. Computational Insight into Protein Tyrosine Phosphatase 1B Inhibition: A Case Study of the Combined Ligand- and Structure-Based Approach. Zhang X, Jiang H, Li W, Wang J, Cheng M. Comput Math Methods Med 2017 4245613 (2017)
  27. Reviving B-Factors: Activating ALK Mutations Increase Protein Dynamics of the Unphosphorylated Kinase. Johnson TW, Bolanos B, Brooun A, Gallego RA, Gehlhaar D, Jalaie M, McTigue M, Timofeevski S. ACS Med Chem Lett 9 872-877 (2018)
  28. Room-temperature serial synchrotron crystallography of the human phosphatase PTP1B. Sharma S, Ebrahim A, Keedy DA. Acta Crystallogr F Struct Biol Commun 79 23-30 (2023)
  29. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Kumar AP, Nguyen MN, Verma C, Lukman S. Proteins 86 301-321 (2018)
  30. Letter Discovery and Validation of the Binding Poses of Allosteric Fragment Hits to Protein Tyrosine Phosphatase 1b: From Molecular Dynamics Simulations to X-ray Crystallography. Greisman JB, Willmore L, Yeh CY, Giordanetto F, Shahamadtar S, Nisonoff H, Maragakis P, Shaw DE. J Chem Inf Model 63 2644-2650 (2023)
  31. Frustration-guided motion planning reveals conformational transitions in proteins. Budday D, Fonseca R, Leyendecker S, van den Bedem H. Proteins 85 1795-1807 (2017)
  32. AQcalc: A web server that identifies weak molecular interactions in protein structures. Afshinpour M, Smith LA, Chakravarty S. Protein Sci 32 e4762 (2023)
  33. Direct Intracellular Delivery of Benzene Diazonium Ions As Observed by Increased Tyrosine Phosphorylation. Cornejo NR, Amofah B, Lipinski A, Langlais PR, Ghosh I, Jewett JC. Biochemistry 61 656-664 (2022)
  34. Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO2+) chelates. Hon J, Hwang MS, Charnetzki MA, Rashed IJ, Brady PB, Quillin S, Makinen MW. J Biol Inorg Chem 22 1267-1279 (2017)
  35. 1H, 15N and 13C sequence specific backbone assignment of the vanadate inhibited hematopoietic tyrosine phosphatase. Machado LESF, Page R, Peti W. Biomol NMR Assign 12 5-9 (2018)
  36. A Conserved Local Structural Motif Controls the Kinetics of PTP1B Catalysis. Yeh CY, Izaguirre JA, Greisman JB, Willmore L, Maragakis P, Shaw DE. J Chem Inf Model 63 4115-4124 (2023)
  37. An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Shi T, Wijeratne EMK, Solano C, Ambrose AJ, Ross AB, Norwood C, Orido CK, Grigoryan T, Tillotson J, Kang M, Luo G, Keegan BM, Hu W, Hu W, Blagg BSJ, Zhang DD, Gunatilaka AAL, Chapman E. Biochemistry 58 3225-3231 (2019)
  38. Assessment of Flexible Shape Complementarity: New Opportunities to Explain and Induce Selectivity in Ligands of Protein Tyrosine Phosphatase 1B. Naß A, Schaller D, Wolber G. Mol Inform 38 e1800141 (2019)
  39. Biophysical Rationale for the Selective Inhibition of PTP1B over TCPTP by Nonpolar Terpenoids. Friedman AJ, Padgette HM, Kramer L, Liechty ET, Donovan GW, Fox JM, Shirts MR. J Phys Chem B 127 8305-8316 (2023)
  40. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Hardie A, Cossins BP, Lovera S, Michel J. Commun Chem 6 125 (2023)
  41. Dynamic Long-Range Interactions Influence Substrate Binding and Catalysis by Human Histidine Triad Nucleotide-Binding Proteins (HINTs), Key Regulators of Multiple Cellular Processes and Activators of Antiviral ProTides. Strom A, Shah R, Dolot R, Rogers MS, Tong CL, Wang D, Xia Y, Lipscomb JD, Wagner CR. Biochemistry 61 2648-2661 (2022)
  42. Macromolecular crowding amplifies allosteric regulation of T-cell protein tyrosine phosphatase. Tun MT, Yang S, Forti FL, Santelli E, Bottini N. J Biol Chem 298 102655 (2022)
  43. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  44. Protein Conformational Space at the Edge of Allostery: Turning a Nonallosteric Malate Dehydrogenase into an "Allosterized" Enzyme Using Evolution-Guided Punctual Mutations. Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Mol Biol Evol 39 msac186 (2022)
  45. Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation. Elias RD, Zhu Y, Su Q, Ghirlando R, Zhang J, Deshmukh L. Sci Adv 9 eadg3913 (2023)