5ine Citations

Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV.

Nat Struct Mol Biol 23 513-521 (2016)
Cited: 44 times
EuropePMC logo PMID: 27111888

Abstract

Arenaviruses exist worldwide and can cause hemorrhagic fever and neurologic disease. A single glycoprotein expressed on the viral surface mediates entry into target cells. This glycoprotein, termed GPC, contains a membrane-associated signal peptide, a receptor-binding subunit termed GP1 and a fusion-mediating subunit termed GP2. Although GPC is a critical target of antibodies and vaccines, the structure of the metastable GP1-GP2 prefusion complex has remained elusive for all arenaviruses. Here we describe the crystal structure of the fully glycosylated prefusion GP1-GP2 complex of the prototypic arenavirus LCMV at 3.5 Å. This structure reveals the conformational changes that the arenavirus glycoprotein must undergo to cause fusion and illustrates the fusion regions and potential oligomeric states.

Reviews - 5ine mentioned but not cited (1)

  1. Unraveling virus relationships by structure-based phylogenetic classification. Ng WM, Stelfox AJ, Bowden TA. Virus Evol 6 veaa003 (2020)

Articles - 5ine mentioned but not cited (2)

  1. Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Hastie KM, Igonet S, Sullivan BM, Legrand P, Zandonatti MA, Robinson JE, Garry RF, Rey FA, Oldstone MB, Saphire EO. Nat Struct Mol Biol 23 513-521 (2016)
  2. Structure-Based Classification Defines the Discrete Conformational Classes Adopted by the Arenaviral GP1. Pryce R, Ng WM, Zeltina A, Watanabe Y, El Omari K, Wagner A, Bowden TA. J Virol 93 e01048-18 (2019)


Reviews citing this publication (10)

  1. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Ward AB, Wilson IA. Immunol Rev 275 21-32 (2017)
  2. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Brisse ME, Ly H. Front Immunol 10 372 (2019)
  3. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Torrents de la Peña A, Sanders RW. Retrovirology 15 63 (2018)
  4. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Hulswit RJG, Paesen GC, Bowden TA, Shi X. Viruses 13 353 (2021)
  5. Lassa virus glycoprotein: stopping a moving target. Hastie KM, Saphire EO. Curr Opin Virol 31 52-58 (2018)
  6. Structure-function relationship of the mammarenavirus envelope glycoprotein. Wang W, Zhou Z, Zhang L, Wang S, Xiao G. Virol Sin 31 380-394 (2016)
  7. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Pennington HN, Lee J. Biosci Rep 42 BSR20211930 (2022)
  8. Lassa Fever Virus Binds Matriglycan-A Polymer of Alternating Xylose and Glucuronate-On α-Dystroglycan. Joseph S, Campbell KP. Viruses 13 1679 (2021)
  9. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Sandalova T, Sala BM, Achour A. Front Chem 10 861609 (2022)
  10. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Loureiro ME, D'Antuono A, López N. Pathogens 8 E17 (2019)

Articles citing this publication (31)

  1. Structural basis for antibody-mediated neutralization of Lassa virus. Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO. Science 356 923-928 (2017)
  2. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, Kannadka CB, Smira AA, Garry CE, Bradley BT, Yu H, Shaffer JG, Boisen ML, Hartnett JN, Zandonatti MA, Rowland MM, Heinrich ML, Martínez-Sobrido L, Cheng B, de la Torre JC, Andersen KG, Goba A, Momoh M, Fullah M, Gbakie M, Kanneh L, Koroma VJ, Fonnie R, Jalloh SC, Kargbo B, Vandi MA, Gbetuwa M, Ikponmwosa O, Asogun DA, Okokhere PO, Follarin OA, Schieffelin JS, Pitts KR, Geisbert JB, Kulakoski PC, Wilson RB, Happi CT, Sabeti PC, Gevao SM, Khan SH, Grant DS, Geisbert TW, Saphire EO, Branco LM, Garry RF. Nat Commun 7 11544 (2016)
  3. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. Proc Natl Acad Sci U S A 115 7320-7325 (2018)
  4. Role of LAMP1 Binding and pH Sensing by the Spike Complex of Lassa Virus. Cohen-Dvashi H, Israeli H, Shani O, Katz A, Diskin R. J Virol 90 10329-10338 (2016)
  5. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses. Israeli H, Cohen-Dvashi H, Shulman A, Shimon A, Diskin R. PLoS Pathog 13 e1006337 (2017)
  6. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO. Cell 178 1004-1015.e14 (2019)
  7. Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses. Clark LE, Mahmutovic S, Raymond DD, Dilanyan T, Koma T, Manning JT, Shankar S, Levis SC, Briggiler AM, Enria DA, Wucherpfennig KW, Paessler S, Abraham J. Nat Commun 9 1884 (2018)
  8. Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. Torriani G, Trofimenko E, Mayor J, Fedeli C, Moreno H, Michel S, Heulot M, Chevalier N, Zimmer G, Shrestha N, Plattet P, Engler O, Rothenberger S, Widmann C, Kunz S. J Virol 93 e01744-18 (2019)
  9. Induction of Antiviral Immune Response through Recognition of the Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent. Shepardson KM, Schwarz B, Larson K, Morton RV, Avera J, McCoy K, Caffrey A, Harmsen A, Douglas T, Rynda-Apple A. mBio 8 e01356-17 (2017)
  10. Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization. Acciani M, Alston JT, Zhao G, Reynolds H, Ali AM, Xu B, Brindley MA. J Virol 91 e00574-17 (2017)
  11. Structure and receptor recognition by the Lassa virus spike complex. Katz M, Weinstein J, Eilon-Ashkenazy M, Gehring K, Cohen-Dvashi H, Elad N, Fleishman SJ, Diskin R. Nature 603 174-179 (2022)
  12. Identification of Residues in Lassa Virus Glycoprotein Subunit 2 That Are Critical for Protein Function. Willard KA, Alston JT, Acciani M, Brindley MA. Pathogens 8 E1 (2018)
  13. Structural Basis for Receptor Selectivity by the Whitewater Arroyo Mammarenavirus. Shimon A, Shani O, Diskin R. J Mol Biol 429 2825-2839 (2017)
  14. The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. Markosyan RM, Marin M, Zhang Y, Cohen FS, Melikyan GB. PLoS Pathog 17 e1009488 (2021)
  15. Comprehensive Interactome Analysis Reveals that STT3B Is Required for N-Glycosylation of Lassa Virus Glycoprotein. Zhu S, Wan W, Zhang Y, Shang W, Pan X, Zhang LK, Xiao G. J Virol 93 e01443-19 (2019)
  16. Epistastic Interactions within the Junín Virus Envelope Glycoprotein Complex Provide an Evolutionary Barrier to Reversion in the Live-Attenuated Candid#1 Vaccine. York J, Nunberg JH. J Virol 92 e01682-17 (2018)
  17. Structural basis for receptor recognition by Lujo virus. Cohen-Dvashi H, Kilimnik I, Diskin R. Nat Microbiol 3 1153-1160 (2018)
  18. The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Fedeli C, Moreno H, Kunz S. Viruses 12 E857 (2020)
  19. CD164 is a host factor for lymphocytic choriomeningitis virus entry. Bakkers MJG, Moon-Walker A, Herlo R, Brusic V, Stubbs SH, Hastie KM, Saphire EO, Kirchhausen TL, Whelan SPJ. Proc Natl Acad Sci U S A 119 e2119676119 (2022)
  20. Crystal structures of Lymphocytic choriomeningitis virus endonuclease domain complexed with diketo-acid ligands. Saez-Ayala M, Yekwa EL, Carcelli M, Canard B, Alvarez K, Ferron F. IUCrJ 5 223-235 (2018)
  21. Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus. Herrador A, Fedeli C, Radulovic E, Campbell KP, Moreno H, Gerold G, Kunz S. mBio 10 e02869-18 (2019)
  22. Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. Volland A, Lohmüller M, Heilmann E, Kimpel J, Herzog S, von Laer D. PLoS Pathog 17 e1009996 (2021)
  23. Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide. Garry CE, Garry RF. Viruses 11 E750 (2019)
  24. A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. Moreno H, Rastrojo A, Pryce R, Fedeli C, Zimmer G, Bowden TA, Gerold G, Kunz S. PLoS Negl Trop Dis 14 e0009004 (2020)
  25. Differential infection of murine and human dendritic cell subsets by oncolytic vesicular stomatitis virus variants. Pipperger L, Riepler L, Kimpel J, Siller A, Stoitzner P, Bánki Z, von Laer D. Oncoimmunology 10 1959140 (2021)
  26. Human antibody pieces together the puzzle of the trimeric Lassa virus surface antigen. Zeltina A, Bowden TA. Nat Struct Mol Biol 24 559-560 (2017)
  27. A unique variant of lymphocytic choriomeningitis virus that induces pheromone binding protein MUP: Critical role for CTL. Ware BC, Sullivan BM, LaVergne S, Marro BS, Egashira T, Campbell KP, Elder J, Oldstone MBA. Proc Natl Acad Sci U S A 116 18001-18008 (2019)
  28. Biological Characterization of Conserved Residues within the Cytoplasmic Tail of the Pichinde Arenaviral Glycoprotein Subunit 2 (GP2). Shao J, Huang Q, Liu X, Di D, Dileepan M, Brisse M, Ly H, Liang Y. J Virol 93 e01277-19 (2019)
  29. Fusogenic structural changes in arenavirus glycoproteins are associated with viroporin activity. Zhang Y, York J, Brindley MA, Nunberg JH, Melikyan GB. PLoS Pathog 19 e1011217 (2023)
  30. Analysis of Oligomeric and Glycosylated Proteins by Size-Exclusion Chromatography Coupled with Multiangle Light Scattering. Hastie K, Rayaprolu V, Saphire EO. Methods Mol Biol 2271 343-359 (2021)
  31. The Art of Viral Membrane Fusion and Penetration. Winter SL, Chlanda P. Subcell Biochem 106 113-152 (2023)