5fxh Citations

Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.

Nature 534 63-8 (2016)
Related entries: 5b3j, 5fxg, 5fxi, 5fxj, 5fxk

Cited: 114 times
EuropePMC logo PMID: 27135925

Abstract

The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domain (ATD). Recent crystal structures of GluN1-GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1-GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel.

Reviews - 5fxh mentioned but not cited (1)

  1. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Pharmacol Rev 73 298-487 (2021)

Articles - 5fxh mentioned but not cited (12)

  1. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H. Nature 534 63-68 (2016)
  2. Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors. Regan MC, Grant T, McDaniel MJ, Karakas E, Zhang J, Traynelis SF, Grigorieff N, Furukawa H. Neuron 98 521-529.e3 (2018)
  3. Functional Evaluation of a De Novo GRIN2A Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H. Mol. Pharmacol. 91 317-330 (2017)
  4. Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Chou TH, Tajima N, Romero-Hernandez A, Furukawa H. Cell 182 357-371.e13 (2020)
  5. NMDA receptor channel gating control by the pre-M1 helix. McDaniel MJ, Ogden KK, Kell SA, Burger PB, Liotta DC, Traynelis SF. J Gen Physiol 152 e201912362 (2020)
  6. Triheteromeric NMDA receptors: from structure to synaptic physiology. Stroebel D, Casado M, Paoletti P. Curr Opin Physiol 2 1-12 (2018)
  7. A structurally derived model of subunit-dependent NMDA receptor function. Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. J. Physiol. (Lond.) 596 4057-4089 (2018)
  8. Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A. Elmasri M, Hunter DW, Winchester G, Bates EE, Aziz W, Van Der Does DM, Karachaliou E, Sakimura K, Penn AC. Commun Biol 5 174 (2022)
  9. Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Zhu Z, Yi F, Epplin MP, Liu D, Summer SL, Mizu R, Shaulsky G, XiangWei W, Tang W, Burger PB, Menaldino DS, Myers SJ, Liotta DC, Hansen KB, Yuan H, Traynelis SF. Neuropharmacology 176 108117 (2020)
  10. Computer Simulations Predict High Structural Heterogeneity of Functional State of NMDA Receptors. Sinitskiy AV, Pande VS. Biophys. J. 115 841-852 (2018)
  11. Development and characterization of functional antibodies targeting NMDA receptors. Tajima N, Simorowski N, Yovanno RA, Regan MC, Michalski K, Gómez R, Lau AY, Furukawa H. Nat Commun 13 923 (2022)
  12. Isoform-specific Inhibition of N-methyl-D-aspartate Receptors by Bile Salts. Koch A, Bonus M, Gohlke H, Klöcker N. Sci Rep 9 10068 (2019)


Reviews citing this publication (26)

  1. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  2. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Greger IH, Watson JF, Cull-Candy SG. Neuron 94 713-730 (2017)
  3. NMDA receptors: linking physiological output to biophysical operation. Iacobucci GJ, Popescu GK. Nat. Rev. Neurosci. 18 236-249 (2017)
  4. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr. Opin. Struct. Biol. 41 194-202 (2016)
  5. Structural biology of glutamate receptor ion channel complexes. Mayer ML. Curr. Opin. Struct. Biol. 41 119-127 (2016)
  6. Supramolecular organization of NMDA receptors and the postsynaptic density. Frank RA, Grant SG. Curr. Opin. Neurobiol. 45 139-147 (2017)
  7. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Zhu S, Gouaux E. Neuropharmacology 112 11-15 (2017)
  8. Structure, function, and allosteric modulation of NMDA receptors. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. J. Gen. Physiol. 150 1081-1105 (2018)
  9. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  10. Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Zhou HX, Wollmuth LP. Trends Neurosci. 40 129-137 (2017)
  11. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Mayer ML. Biophys. J. 113 2143-2151 (2017)
  12. Advances in D-Amino Acids in Neurological Research. Seckler JM, Lewis SJ. Int J Mol Sci 21 E7325 (2020)
  13. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. Burnell ES, Irvine M, Fang G, Sapkota K, Jane DE, Monaghan DT. J. Med. Chem. 62 3-23 (2019)
  14. Dissecting diverse functions of NMDA receptors by structural biology. Wang JX, Furukawa H. Curr Opin Struct Biol 54 34-42 (2019)
  15. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. MacLean DM, Durham RJ, Jayaraman V. Trends Neurosci 42 128-139 (2019)
  16. AMPA receptor structure and auxiliary subunits. Kamalova A, Nakagawa T. J Physiol 599 453-469 (2021)
  17. Anticraving therapy for alcohol use disorder: A clinical review. Shen WW. Neuropsychopharmacol Rep 38 105-116 (2018)
  18. From bedside-to-bench: What disease-associated variants are teaching us about the NMDA receptor. Amin JB, Moody GR, Wollmuth LP. J Physiol 599 397-416 (2021)
  19. Structural insights into NMDA receptor pharmacology. Zhou C, Tajima N. Biochem Soc Trans 51 1713-1731 (2023)
  20. Toxins in pain. Cardoso FC, Hasan M, Zhao T, Lewis RJ. Curr Opin Support Palliat Care 12 132-141 (2018)
  21. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Krieger J, Lee JY, Greger IH, Bahar I. Neurosci. Lett. 700 22-29 (2019)
  22. Allosteric antagonist action at triheteromeric NMDA receptors. Gibb AJ. Neuropharmacology 202 108861 (2022)
  23. Interplay between Gating and Block of Ligand-Gated Ion Channels. Phillips MB, Nigam A, Johnson JW. Brain Sci 10 (2020)
  24. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Front Neurol 13 1013083 (2022)
  25. Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes. Ritter N, Disse P, Wünsch B, Seebohm G, Strutz-Seebohm N. Biomedicines 11 1367 (2023)
  26. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Neuropsychopharmacology (2023)

Articles citing this publication (75)

  1. NMDA Receptors in the Central Nervous System. Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. Methods Mol Biol 1677 1-80 (2017)
  2. Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. Ogden KK, Chen W, Swanger SA, McDaniel MJ, Fan LZ, Hu C, Tankovic A, Kusumoto H, Kosobucki GJ, Schulien AJ, Su Z, Pecha J, Bhattacharya S, Petrovski S, Cohen AE, Aizenman E, Traynelis SF, Yuan H. PLoS Genet. 13 e1006536 (2017)
  3. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Lü W, Du J, Goehring A, Gouaux E. Science 355 (2017)
  4. Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain. Romero-Hernandez A, Simorowski N, Karakas E, Furukawa H. Neuron 92 1324-1336 (2016)
  5. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Li SX, Han Y, Xu LZ, Yuan K, Zhang RX, Sun CY, Xu DF, Yuan M, Deng JH, Meng SQ, Gao XJ, Wen Q, Liu LJ, Zhu WL, Xue YX, Zhao M, Shi J, Lu L. Mol. Psychiatry 23 597-608 (2018)
  6. Structural Mechanisms of Gating in Ionotropic Glutamate Receptors. Twomey EC, Sobolevsky AI. Biochemistry 57 267-276 (2018)
  7. A randomized controlled study of the effect of ifenprodil on alcohol use in patients with alcohol dependence. Sugaya N, Ogai Y, Aikawa Y, Yumoto Y, Takahama M, Tanaka M, Haraguchi A, Umeno M, Ikeda K. Neuropsychopharmacol Rep 38 9-17 (2018)
  8. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. Perszyk RE, Myers SJ, Yuan H, Gibb AJ, Furukawa H, Sobolevsky AI, Traynelis SF. J Physiol 598 3071-3083 (2020)
  9. All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water. Mesbahi-Vasey S, Veras L, Yonkunas M, Johnson JW, Kurnikova MG. PLoS ONE 12 e0177686 (2017)
  10. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Romero-Hernandez A, Furukawa H. Mol. Pharmacol. 92 22-29 (2017)
  11. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors. Sinitskiy AV, Stanley NH, Hackos DH, Hanson JE, Sellers BD, Pande VS. Sci Rep 7 44578 (2017)
  12. GRIN2B gain of function mutations are sensitive to radiprodil, a negative allosteric modulator of GluN2B-containing NMDA receptors. Mullier B, Wolff C, Sands ZA, Ghisdal P, Muglia P, Kaminski RM, André VM. Neuropharmacology 123 322-331 (2017)
  13. Identification and Preclinical Evaluation of a Radiofluorinated Benzazepine Derivative for Imaging the GluN2B Subunit of the Ionotropic NMDA Receptor. Haider A, Iten I, Ahmed H, Müller Herder A, Gruber S, Krämer SD, Keller C, Schibli R, Wünsch B, Mu L, Ametamey SM. J Nucl Med jnumed.118.212134 (2018)
  14. Modulating synaptic NMDA receptors. Tovar KR, Westbrook GL. Neuropharmacology 112 29-33 (2017)
  15. Positive Allosteric Modulation of Insect Olfactory Receptor Function by ORco Agonists. Tsitoura P, Iatrou K. Front Cell Neurosci 10 275 (2016)
  16. Probing the Structural Dynamics of the NMDA Receptor Activation by Coarse-Grained Modeling. Zheng W, Wen H, Iacobucci GJ, Popescu GK. Biophys. J. 112 2589-2601 (2017)
  17. The Bioactive Protein-Ligand Conformation of GluN2C-Selective Positive Allosteric Modulators Bound to the NMDA Receptor. Kaiser TM, Kell SA, Kusumoto H, Shaulsky G, Bhattacharya S, Epplin MP, Strong KL, Miller EJ, Cox BD, Menaldino DS, Liotta DC, Traynelis SF, Burger PB. Mol. Pharmacol. 93 141-156 (2018)
  18. An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. Perszyk R, Katzman BM, Kusumoto H, Kell SA, Epplin MP, Tahirovic YA, Moore RL, Menaldino D, Burger P, Liotta DC, Traynelis SF. Elife 7 (2018)
  19. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor. Khanra N, Brown PM, Perozzo AM, Bowie D, Meyerson JR. Elife 10 e66097 (2021)
  20. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties. Fedele L, Newcombe J, Topf M, Gibb A, Harvey RJ, Smart TG. Nat Commun 9 957 (2018)
  21. Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage. Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL, Zhang ZY. Transl Stroke Res 12 1067-1080 (2021)
  22. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. Klippenstein V, Hoppmann C, Ye S, Wang L, Paoletti P. Elife 6 (2017)
  23. Structural modeling for the open state of an NMDA receptor. Pang X, Zhou HX. J. Struct. Biol. 200 369-375 (2017)
  24. The structure-energy landscape of NMDA receptor gating. Dolino DM, Chatterjee S, MacLean DM, Flatebo C, Bishop LDC, Shaikh SA, Landes CF, Jayaraman V. Nat. Chem. Biol. 13 1232-1238 (2017)
  25. [2.2]Paracyclophane-Based TCN-201 Analogs as GluN2A-Selective NMDA Receptor Antagonists. Rajan R, Schepmann D, Steigerwald R, Schreiber JA, El-Awaad E, Jose J, Seebohm G, Wünsch B. ChemMedChem 16 3201-3209 (2021)
  26. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Tian M, Ye S. Sci Rep 6 34751 (2016)
  27. An inter-dimer allosteric switch controls NMDA receptor activity. Esmenjaud JB, Stroebel D, Chan K, Grand T, David M, Wollmuth LP, Taly A, Paoletti P. EMBO J. 38 (2019)
  28. Comparative Pharmacological Study of Common NMDA Receptor Open Channel Blockers Regarding Their Affinity and Functional Activity toward GluN2A and GluN2B NMDA Receptors. Temme L, Schepmann D, Schreiber JA, Frehland B, Wünsch B. ChemMedChem 13 446-452 (2018)
  29. Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. Structure 27 241-252.e3 (2019)
  30. Effective production of oligomeric membrane proteins by EarlyBac-insect cell system. Furukawa H, Simorowski N, Michalski K. Methods Enzymol 653 3-19 (2021)
  31. Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Bhatia NK, Carrillo E, Durham RJ, Berka V, Jayaraman V. Biophys J 119 2349-2359 (2020)
  32. Bidentatide, a Novel Plant Peptide Derived from Achyranthes bidentata Blume: Isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. Ding F, Bai Y, Cheng Q, Yu S, Cheng M, Wu Y, Zhang X, Liang X, Gu X. Int J Mol Sci 22 7977 (2021)
  33. Conformational spread and dynamics in allostery of NMDA receptors. Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, Gorfe AA, Jayaraman V. Proc Natl Acad Sci U S A 117 3839-3847 (2020)
  34. Correlated conformational dynamics of the human GluN1-GluN2A type N-methyl-D-aspartate (NMDA) receptor. Essiz S, Gencel M, Aktolun M, Demir A, Carpenter TS, Servili B. J Mol Model 27 162 (2021)
  35. Excitatory and inhibitory D-serine binding to the NMDA receptor. Yovanno RA, Chou TH, Brantley SJ, Furukawa H, Lau AY. Elife 11 e77645 (2022)
  36. Glutamate and Glycine Binding to the NMDA Receptor. Yu A, Lau AY. Structure 26 1035-1043.e2 (2018)
  37. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Chan K, Nestor J, Huerta TS, Certain N, Moody G, Kowal C, Huerta PT, Volpe BT, Diamond B, Wollmuth LP. Nat Commun 11 1403 (2020)
  38. Preferential enhancement of GluN2B-containing native NMDA receptors by the endogenous modulator 24S-hydroxycholesterol in hippocampal neurons. Wei X, Nishi T, Kondou S, Kimura H, Mody I. Neuropharmacology 148 11-20 (2019)
  39. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Regan MC, Zhu Z, Yuan H, Myers SJ, Menaldino DS, Tahirovic YA, Liotta DC, Traynelis SF, Furukawa H. Nat Commun 10 321 (2019)
  40. The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate. Ladislav M, Cerny J, Krusek J, Horak M, Balik A, Vyklicky L. Front Mol Neurosci 11 113 (2018)
  41. A High-throughput Calcium-flux Assay to Study NMDA-receptors with Sensitivity to Glycine/D-serine and Glutamate. Yeboah F, Guo H, Bill A. J Vis Exp (2018)
  42. A common mechanism allows selective targeting of GluN2B subunit-containing N-methyl-D-aspartate receptors. Schreiber JA, Schepmann D, Frehland B, Thum S, Datunashvili M, Budde T, Hollmann M, Strutz-Seebohm N, Wünsch B, Seebohm G. Commun Biol 2 420 (2019)
  43. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability. Amin JB, Leng X, Gochman A, Zhou HX, Wollmuth LP. Nat Commun 9 3748 (2018)
  44. Allosteric modulation of GluN1/GluN3 NMDA receptors by GluN1-selective competitive antagonists. Rouzbeh N, Rau AR, Benton AJ, Yi F, Anderson CM, Johns MR, Jensen L, Lotti JS, Holley DC, Hansen KB. J Gen Physiol 155 e202313340 (2023)
  45. Altered Synaptic and Extrasynaptic NMDA Receptor Properties in Substantia Nigra Dopaminergic Neurons From Mice Lacking the GluN2D Subunit. Morris PG, Mishina M, Jones S. Front Cell Neurosci 12 354 (2018)
  46. Antinociceptive Activity of Borreria verticillata: In vivo and In silico Studies. Silva RHM, Lima NFM, Lopes AJO, Vasconcelos CC, de Mesquita JWC, de Mesquita LSS, Lima FCVM, Ribeiro MNS, Ramos RM, Cartágenes MDSS, Garcia JBS. Front Pharmacol 8 283 (2017)
  47. Assessment of 9-OH- and 7,8-diol-benzo[a]pyrene in Blood as Potent Markers of Cognitive Impairment Related to benzo[a]pyrene Exposure: An Animal Model Study. Cherif LS, Cao-Lei L, Farinelle S, Muller CP, Turner JD, Schroeder H, Grova N. Toxics 9 50 (2021)
  48. Auxiliary subunits keep AMPA receptors compact during activation and desensitization. Baranovic J, Plested AJ. Elife 7 (2018)
  49. Binding and Dynamics Demonstrate the Destabilization of Ligand Binding for the S688Y Mutation in the NMDA Receptor GluN1 Subunit. Chen JZ, Church WB, Bastard K, Duff AP, Balle T. Molecules 28 4108 (2023)
  50. Biphenyl scaffold for the design of NMDA-receptor negative modulators: molecular modeling, synthesis, and biological activity. Karlov DS, Temnyakova NS, Vasilenko DA, Barygin OI, Dron MY, Zhigulin AS, Averina EB, Grishin YK, Grigoriev VV, Gabrel'yan AV, Aniol VA, Gulyaeva NV, Osipenko SV, Kostyukevich YI, Palyulin VA, Popov PA, Fedorov MV. RSC Med Chem 13 822-830 (2022)
  51. Complex functional phenotypes of NMDA receptor disease variants. Iacobucci GJ, Liu B, Wen H, Sincox B, Zheng W, Popescu GK. Mol Psychiatry 27 5113-5123 (2022)
  52. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Vyklicky V, Stanley C, Habrian C, Isacoff EY. Nat Commun 12 2694 (2021)
  53. Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Iacobucci GJ, Wen H, Helou M, Liu B, Zheng W, Popescu GK. Proc Natl Acad Sci U S A 118 (2021)
  54. Development of a Dihydroquinoline-Pyrazoline GluN2C/2D-Selective Negative Allosteric Modulator of the N-Methyl-d-aspartate Receptor. D'Erasmo MP, Akins NS, Ma P, Jing Y, Swanger SA, Sharma SK, Bartsch PW, Menaldino DS, Arcoria PJ, Bui TT, Pons-Bennaceur A, Le P, Allen JP, Ullman EZ, Nocilla KA, Zhang J, Perszyk RE, Kim S, Acker TM, Taz A, Burton SL, Coe K, Fritzemeier RG, Burnashev N, Yuan H, Liotta DC, Traynelis SF. ACS Chem Neurosci 14 3059-3076 (2023)
  55. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, Zhu S. Nat Struct Mol Biol (2023)
  56. Downstream Allosteric Modulation of NMDA Receptors by 3-Benzazepine Derivatives. Ritter N, Disse P, Aymanns I, Mücher L, Schreiber JA, Brenker C, Strünker T, Schepmann D, Budde T, Strutz-Seebohm N, Ametamey SM, Wünsch B, Seebohm G. Mol Neurobiol 60 7238-7252 (2023)
  57. Ethanol and a rapid-acting antidepressant produce overlapping changes in exon expression in the synaptic transcriptome. Wolfe SA, Farris SP, Mayfield JE, Heaney CF, Erickson EK, Harris RA, Mayfield RD, Raab-Graham KF. Neuropharmacology 146 289-299 (2019)
  58. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. Nat Commun 12 4709 (2021)
  59. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? Palmai Z, Houenoussi K, Cohen-Kaminsky S, Tchertanov L. PLoS ONE 13 e0201234 (2018)
  60. Ifenprodil and Flavopiridol Identified by Genomewide RNA Interference Screening as Effective Drugs To Ameliorate Murine Acute Lung Injury after Influenza A H5N1 Virus Infection. Zhang C, Zhang Y, Qin Y, Zhang Q, Liu Q, Shang D, Lu H, Li X, Zhou C, Huang F, Jin N, Jiang C. mSystems 4 (2019)
  61. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Structure 27 55-65.e3 (2019)
  62. Ketamine intervention limits pathogen expansion in vitro. Torres G, Hoehmann CL, Cuoco JA, Hitscherich K, Pavia C, Hadjiargyrou M, Leheste JR. Pathog Dis 76 (2018)
  63. Kinetic models for activation and modulation of NMDA receptor subtypes. Iacobucci GJ, Popescu GK. Curr Opin Physiol 2 114-122 (2018)
  64. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Cell 175 1520-1532.e15 (2018)
  65. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Amin JB, Gochman A, He M, Certain N, Wollmuth LP. Neuron 109 488-501.e4 (2021)
  66. NMDA Receptors' Structural Asymmetry. Jalali-Yazdi F, Gouaux E. Microsc Microanal 25 1218-1219 (2019)
  67. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. Harris LD, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, Liotta DC. ACS Chem Neurosci 14 917-935 (2023)
  68. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. ACS Chem Neurosci 9 2722-2730 (2018)
  69. Photochemical control of drug efficacy - a comparison of uncaging and photoswitching ifenprodil on NMDA receptors. Thapaliya ER, Mony L, Sanchez R, Serraz B, Paoletti P, Ellis-Davies GCR. ChemPhotoChem 5 445-454 (2021)
  70. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach. Yadav R, Lu HP. Phys Chem Chem Phys 20 8088-8098 (2018)
  71. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs. Chou TH, Kang H, Simorowski N, Traynelis SF, Furukawa H. Mol Cell 82 4548-4563.e4 (2022)
  72. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Chou TH, Epstein M, Michalski K, Fine E, Biggin PC, Furukawa H. Nat Struct Mol Biol 29 507-518 (2022)
  73. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Wells G, Yuan H, McDaniel MJ, Kusumoto H, Snyder JP, Liotta DC, Traynelis SF. Proteins 86 1265-1276 (2018)
  74. The effect of high pressure on the NMDA receptor: molecular dynamics simulations. Bliznyuk A, Grossman Y, Moskovitz Y. Sci Rep 9 10814 (2019)
  75. Comment The pre-M1 helix controls NMDA receptor gating. Short B. J Gen Physiol 152 e202012600 (2020)