5fw3 Citations

Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

Mol Cell 61 895-902 (2016)
Related entries: 5fw1, 5fw2

Cited: 90 times
EuropePMC logo PMID: 26990992

Abstract

The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools.

Reviews - 5fw3 mentioned but not cited (1)

  1. Data Mining by Pluralistic Approach on CRISPR Gene Editing in Plants. Kaul T, Raman NM, Eswaran M, Thangaraj A, Verma R, Sony SK, Sathelly KM, Kaul R, Yadava P, Agrawal PK. Front Plant Sci 10 801 (2019)

Articles - 5fw3 mentioned but not cited (4)

  1. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. Anders C, Bargsten K, Jinek M. Mol Cell 61 895-902 (2016)
  2. Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. Faure G, Shmakov SA, Makarova KS, Wolf YI, Crawley AB, Barrangou R, Koonin EV. RNA Biol 16 435-448 (2019)
  3. Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Wang YC, Liu J. Elife 8 e46500 (2019)
  4. Coevolutionary Couplings Unravel PAM-Proximal Constraints of CRISPR-SpCas9. Li Y, De la Paz JA, Jiang X, Liu R, Pokkulandra AP, Bleris L, Morcos F. Biophys J 117 1684-1691 (2019)


Reviews citing this publication (38)

  1. CRISPR-Cas9 Structures and Mechanisms. Jiang F, Doudna JA. Annu Rev Biophys 46 505-529 (2017)
  2. Delivering CRISPR: a review of the challenges and approaches. Lino CA, Harper JC, Carney JP, Timlin JA. Drug Deliv 25 1234-1257 (2018)
  3. A decade of discovery: CRISPR functions and applications. Barrangou R, Horvath P. Nat Microbiol 2 17092 (2017)
  4. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. Jasin M, Haber JE. DNA Repair (Amst) 44 6-16 (2016)
  5. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Uddin F, Rudin CM, Sen T. Front Oncol 10 1387 (2020)
  6. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Kantor A, McClements ME, MacLaren RE. Int J Mol Sci 21 E6240 (2020)
  7. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing. Swarts DC, Jinek M. Wiley Interdiscip Rev RNA 9 e1481 (2018)
  8. CRISPR technologies and the search for the PAM-free nuclease. Collias D, Beisel CL. Nat Commun 12 555 (2021)
  9. Deciphering, Communicating, and Engineering the CRISPR PAM. Leenay RT, Beisel CL. J Mol Biol 429 177-191 (2017)
  10. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Langner T, Kamoun S, Belhaj K. Annu Rev Phytopathol 56 479-512 (2018)
  11. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S. Plant Biotechnol J 14 2203-2216 (2016)
  12. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Donohoue PD, Barrangou R, May AP. Trends Biotechnol 36 134-146 (2018)
  13. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Liu K, Petree C, Requena T, Varshney P, Varshney GK. Front Cell Dev Biol 7 13 (2019)
  14. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Cebrian-Serrano A, Davies B. Mamm Genome 28 247-261 (2017)
  15. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK, Salgotra RK. Front Plant Sci 10 550 (2019)
  16. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. Prog Retin Eye Res 65 28-49 (2018)
  17. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Shelake RM, Pramanik D, Kim JY. Microorganisms 7 E269 (2019)
  18. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. Wang J, Zhang X, Cheng L, Luo Y. RNA Biol 17 13-22 (2020)
  19. Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q. Int J Mol Sci 20 E3719 (2019)
  20. CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Kumar R, Kaur A, Pandey A, Mamrutha HM, Singh GP. Mol Biol Rep 46 3557-3569 (2019)
  21. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  22. The Impact of CRISPR-Cas System on Antiviral Therapy. Bayat H, Naderi F, Khan AH, Memarnejadian A, Rahimpour A. Adv Pharm Bull 8 591-597 (2018)
  23. A most formidable arsenal: genetic technologies for building a better mouse. Clark JF, Dinsmore CJ, Soriano P. Genes Dev 34 1256-1286 (2020)
  24. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Front Genome Ed 3 630600 (2021)
  25. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Biomed Pharmacother 148 112743 (2022)
  26. Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage. Zuo Z, Liu J. Curr Opin Struct Biol 62 166-174 (2020)
  27. CRISPR/Cas9-mediated genome editing in plants. Liu X, Xie C, Si H, Yang J. Methods 121-122 94-102 (2017)
  28. CRISPR/Cas9: A Novel Weapon in the Arsenal to Combat Plant Diseases. Das A, Sharma N, Prasad M. Front Plant Sci 9 2008 (2018)
  29. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview. Karvelis T, Gasiunas G, Siksnys V. Methods 121-122 3-8 (2017)
  30. Blossom of CRISPR technologies and applications in disease treatment. Liu H, Wang L, Luo Y. Synth Syst Biotechnol 3 217-228 (2018)
  31. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Plants (Basel) 10 1347 (2021)
  32. CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules. Bhagwat AC, Patil AM, Saroj SD. Mol Biotechnol 64 245-251 (2022)
  33. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. He M, Rong R, Ji D, Xia X. Front Cell Dev Biol 10 879957 (2022)
  34. Gene editing monkeys: Retrospect and outlook. Liang W, He J, Mao C, Yu C, Meng Q, Xue J, Wu X, Li S, Wang Y, Yi H. Front Cell Dev Biol 10 913996 (2022)
  35. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Int J Mol Sci 24 7052 (2023)
  36. Recent advances in CRISPR technologies for genome editing. Song M, Koo T. Arch Pharm Res 44 537-552 (2021)
  37. Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Gaba Y, Pareek A, Singla-Pareek SL. Curr Genomics 22 450-467 (2021)
  38. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Wu J, Tao Y, Deng D, Meng Z, Zhao Y. Cell Biosci 13 93 (2023)

Articles citing this publication (47)

  1. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O. Science 361 1259-1262 (2018)
  2. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Science 368 290-296 (2020)
  3. Engineered Cpf1 variants with altered PAM specificities. Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F. Nat Biotechnol 35 789-792 (2017)
  4. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A. Sci Adv 3 eaao0027 (2017)
  5. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Miller SM, Wang T, Randolph PB, Arbab M, Shen MW, Huang TP, Matuszek Z, Newby GA, Rees HA, Liu DR. Nat Biotechnol 38 471-481 (2020)
  6. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Endo A, Masafumi M, Kaya H, Toki S. Sci Rep 6 38169 (2016)
  7. Minimal PAM specificity of a highly similar SpCas9 ortholog. Chatterjee P, Jakimo N, Jacobson JM. Sci Adv 4 eaau0766 (2018)
  8. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. RNA Biol 16 504-517 (2019)
  9. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y. Mol Cell 65 310-322 (2017)
  10. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, Weinhardt N, Fodor E, Welker E. Genome Biol 18 190 (2017)
  11. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Bastet A, Zafirov D, Giovinazzo N, Guyon-Debast A, Nogué F, Robaglia C, Gallois JL. Plant Biotechnol J 17 1736-1750 (2019)
  12. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. ACS Cent Sci 2 756-763 (2016)
  13. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Zuo Z, Liu J. Sci Rep 5 37584 (2016)
  14. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1. Nishimasu H, Yamano T, Gao L, Zhang F, Ishitani R, Nureki O. Mol Cell 67 139-147.e2 (2017)
  15. A Cas9 with PAM recognition for adenine dinucleotides. Chatterjee P, Lee J, Nip L, Koseki SRT, Tysinger E, Sontheimer EJ, Jacobson JM, Jakimo N. Nat Commun 11 2474 (2020)
  16. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Liang C, Wainberg MA, Das AT, Berkhout B. Retrovirology 13 37 (2016)
  17. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. Ding X, Seebeck T, Feng Y, Jiang Y, Davis GD, Chen F. CRISPR J 2 51-63 (2019)
  18. Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Ma D, Xu Z, Zhang Z, Chen X, Zeng X, Zhang Y, Deng T, Ren M, Sun Z, Jiang R, Xie Z. Nat Commun 10 560 (2019)
  19. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. Wang Z, Wang W, Cui YC, Pan Q, Zhu W, Gendron P, Guo F, Cen S, Witcher M, Liang C. J Virol 92 e01135-18 (2018)
  20. R-loop formation and conformational activation mechanisms of Cas9. Pacesa M, Loeff L, Querques I, Muckenfuss LM, Sawicka M, Jinek M. Nature 609 191-196 (2022)
  21. Structural insights into a high fidelity variant of SpCas9. Guo M, Ren K, Zhu Y, Tang Z, Wang Y, Zhang B, Huang Z. Cell Res 29 183-192 (2019)
  22. Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Kweon J, Jang AH, Kim DE, Yang JW, Yoon M, Rim Shin H, Kim JS, Kim Y. Nat Commun 8 1723 (2017)
  23. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes. Soyars CL, Peterson BA, Burr CA, Nimchuk ZL. Plant Cell Physiol 59 1608-1620 (2018)
  24. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing. Kelkar A, Zhu Y, Groth T, Stolfa G, Stablewski AB, Singhi N, Nemeth M, Neelamegham S. Mol Ther 28 29-41 (2020)
  25. High-throughput functional evaluation of human cancer-associated mutations using base editors. Kim Y, Lee S, Cho S, Park J, Chae D, Park T, Minna JD, Kim HH. Nat Biotechnol 40 874-884 (2022)
  26. A positive, growth-based PAM screen identifies noncanonical motifs recognized by the S. pyogenes Cas9. Collias D, Leenay RT, Slotkowski RA, Zuo Z, Collins SP, McGirr BA, Liu J, Beisel CL. Sci Adv 6 eabb4054 (2020)
  27. CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context. Corsi GI, Qu K, Alkan F, Pan X, Luo Y, Gorodkin J. Nat Commun 13 3006 (2022)
  28. Characterization of a Type II-A CRISPR-Cas System in Streptococcus mutans. Mosterd C, Moineau S. mSphere 5 e00235-20 (2020)
  29. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q. PLoS Biol 17 e3000496 (2019)
  30. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. Mekler V, Kuznedelov K, Severinov K. J Biol Chem 295 6509-6517 (2020)
  31. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Zhu Y, Huang Z. Natl Sci Rev 6 438-451 (2019)
  32. Rewiring Cas9 to Target New PAM Sequences. Siksnys V, Gasiunas G. Mol Cell 61 793-794 (2016)
  33. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Wang J, Teng Y, Zhang R, Wu Y, Lou L, Zou Y, Li M, Xie ZR, Yan Y. Nat Commun 12 6916 (2021)
  34. Precise DNA cleavage using CRISPR-SpRYgests. Christie KA, Guo JA, Silverstein RA, Doll RM, Mabuchi M, Stutzman HE, Lin J, Ma L, Walton RT, Pinello L, Robb GB, Kleinstiver BP. Nat Biotechnol 41 409-416 (2023)
  35. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Yang M, Sun R, Deng P, Yang Y, Wang W, Liu JG, Chen C. Chem Sci 12 12776-12784 (2021)
  36. Engineered dual selection for directed evolution of SpCas9 PAM specificity. Goldberg GW, Spencer JM, Giganti DO, Camellato BR, Agmon N, Ichikawa DM, Boeke JD, Noyes MB. Nat Commun 12 349 (2021)
  37. Expanded targeting scope of LbCas12a variants allows editing of multiple oncogenic mutations. Choi E, Hwang HY, Kwon E, Kim D, Koo T. Mol Ther Nucleic Acids 30 131-142 (2022)
  38. Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector control. O'Loughlin SM, Forster AJ, Fuchs S, Dottorini T, Nolan T, Crisanti A, Burt A. G3 (Bethesda) 11 jkab086 (2021)
  39. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Kim N, Choi S, Kim S, Song M, Seo JH, Min S, Park J, Cho SR, Kim HH. Nat Biotechnol (2023)
  40. CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids. Yang H, Eremeeva E, Abramov M, Jacquemyn M, Groaz E, Daelemans D, Herdewijn P. Nucleic Acids Res 51 1501-1511 (2023)
  41. PAM-flexible genome editing with an engineered chimeric Cas9. Zhao L, Koseki SRT, Silverstein RA, Amrani N, Peng C, Kramme C, Savic N, Pacesa M, Rodríguez TC, Stan T, Tysinger E, Hong L, Yudistyra V, Ponnapati MR, Jacobson JM, Church GM, Jakimo N, Truant R, Jinek M, Kleinstiver BP, Sontheimer EJ, Chatterjee P. Nat Commun 14 6175 (2023)
  42. A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets. Kulcsár PI, Tálas A, Ligeti Z, Tóth E, Rakvács Z, Bartos Z, Krausz SL, Welker Á, Végi VL, Huszár K, Welker E. Nat Commun 14 5746 (2023)
  43. Engineering a Streptococcus Cas9 Ortholog with an RxQ PAM-Binding Motif for PAM-Free Gene Control in Bacteria. Teng Y, Wang J, Jiang T, Zou Y, Yan Y. ACS Synth Biol 12 2764-2772 (2023)
  44. Identification of a novel type II-C Cas9 from the fish pathogen Flavobacterium psychrophilum. Chen F, Wang D, Lu T, Li S. Front Microbiol 14 1181303 (2023)
  45. Massively parallel evaluation and computational prediction of the activities and specificities of 17 small Cas9s. Seo SY, Min S, Lee S, Seo JH, Park J, Kim HK, Song M, Baek D, Cho SR, Kim HH. Nat Methods 20 999-1009 (2023)
  46. Shifted PAMs generate DNA overhangs and enhance SpCas9 post-catalytic complex dissociation. Wang J, Le Gall J, Frock RL, Strick TR. Nat Struct Mol Biol 30 1707-1718 (2023)
  47. What Is the CRISPR System and How It Is Used? Contiliani DF, Moraes VN, Passos GA, Pereira TC. Adv Exp Med Biol 1429 1-11 (2023)