5fur Citations

Structure of promoter-bound TFIID and model of human pre-initiation complex assembly.

Nature 531 604-9 (2016)
Cited: 137 times
EuropePMC logo PMID: 27007846

Abstract

The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.

Reviews - 5fur mentioned but not cited (1)

  1. Autophagy Modulators in Cancer Therapy. Buzun K, Gornowicz A, Lesyk R, Bielawski K, Bielawska A. Int J Mol Sci 22 5804 (2021)

Articles - 5fur mentioned but not cited (7)

  1. Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E. Nature 531 604-609 (2016)
  2. Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. McGrail DJ, Garnett J, Yin J, Dai H, Shih DJH, Lam TNA, Li Y, Sun C, Li Y, Schmandt R, Wu JY, Hu L, Liang Y, Peng G, Jonasch E, Menter D, Yates MS, Kopetz S, Lu KH, Broaddus R, Mills GB, Sahni N, Lin SY. Cancer Cell 37 371-386.e12 (2020)
  3. FoldX accurate structural protein-DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1). Blanco JD, Radusky L, Climente-González H, Serrano L. Nucleic Acids Res 46 3852-3863 (2018)
  4. Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning. Wang X, Alnabati E, Aderinwale TW, Maddhuri Venkata Subramaniya SR, Terashi G, Kihara D. Nat Commun 12 2302 (2021)
  5. A New Structural Model of Apolipoprotein B100 Based on Computational Modeling and Cross Linking. Jeiran K, Gordon SM, Sviridov DO, Aponte AM, Haymond A, Piszczek G, Lucero D, Neufeld EB, Vaisman II, Liotta L, Baranova A, Remaley AT. Int J Mol Sci 23 11480 (2022)
  6. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. Nat Commun 11 2828 (2020)
  7. cLD: Rare-variant linkage disequilibrium between genomic regions identifies novel genomic interactions. Wang D, Perera D, He J, Cao C, Kossinna P, Li Q, Zhang W, Guo X, Platt A, Wu J, Zhang Q. PLoS Genet 19 e1011074 (2023)


Reviews citing this publication (37)

  1. Organization and regulation of gene transcription. Cramer P. Nature 573 45-54 (2019)
  2. Structure and mechanism of the RNA polymerase II transcription machinery. Schier AC, Taatjes DJ. Genes Dev 34 465-488 (2020)
  3. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Zabidi MA, Stark A. Trends Genet. 32 801-814 (2016)
  4. Structural Insights into the Eukaryotic Transcription Initiation Machinery. Nogales E, Louder RK, He Y. Annu Rev Biophys 46 59-83 (2017)
  5. The punctilious RNA polymerase II core promoter. Vo Ngoc L, Wang YL, Kassavetis GA, Kadonaga JT. Genes Dev. 31 1289-1301 (2017)
  6. Conserved RNA polymerase II initiation complex structure. Hantsche M, Cramer P. Curr. Opin. Struct. Biol. 47 17-22 (2017)
  7. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Nogales E, Louder RK, He Y. Curr. Opin. Struct. Biol. 40 120-127 (2016)
  8. High-resolution cryo-EM structures of TFIIH and their functional implications. Nogales E, Greber BJ. Curr Opin Struct Biol 59 188-194 (2019)
  9. Co-transcriptional splicing and the CTD code. Custódio N, Carmo-Fonseca M. Crit. Rev. Biochem. Mol. Biol. 51 395-411 (2016)
  10. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci. 26 69-81 (2017)
  11. Cell fate decisions, transcription factors and signaling during early retinal development. Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Prog Retin Eye Res 91 101093 (2022)
  12. Chromatin dependencies in cancer and inflammation. Marazzi I, Greenbaum BD, Low DHP, Guccione E. Nat. Rev. Mol. Cell Biol. 19 245-261 (2018)
  13. RNA polymerase I and III: similar yet unique. Khatter H, Vorländer MK, Müller CW. Curr. Opin. Struct. Biol. 47 88-94 (2017)
  14. Eukaryotic core promoters and the functional basis of transcription initiation. Haberle V, Stark A. Nat. Rev. Mol. Cell Biol. 19 621-637 (2018)
  15. Recent insights into the structure of TFIID, its assembly, and its binding to core promoter. Patel AB, Greber BJ, Nogales E. Curr Opin Struct Biol 61 17-24 (2020)
  16. The RNA Polymerase II Core Promoter in Drosophila. Vo Ngoc L, Kassavetis GA, Kadonaga JT. Genetics 212 13-24 (2019)
  17. Assembly of RNA polymerase II transcription initiation complexes. Farnung L, Vos SM. Curr Opin Struct Biol 73 102335 (2022)
  18. Genome-wide characterization of Mediator recruitment, function, and regulation. Grünberg S, Zentner GE. Transcription 8 169-174 (2017)
  19. The essential and multifunctional TFIIH complex. Rimel JK, Taatjes DJ. Protein Sci. 27 1018-1037 (2018)
  20. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? Zhang Y, Najmi SM, Schneider DA. Biochim Biophys Acta Gene Regul Mech 1860 246-255 (2017)
  21. Eukaryotic transcription initiation machinery visualized at molecular level. Han Y, He Y. Transcription 7 203-208 (2016)
  22. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Greber BJ, Nogales E. Subcell Biochem 93 143-192 (2019)
  23. The cryo-EM resolution revolution and transcription complexes. Hanske J, Sadian Y, Müller CW. Curr. Opin. Struct. Biol. 52 8-15 (2018)
  24. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Nogales E, Patel AB, Louder RK. Curr. Opin. Struct. Biol. 47 60-66 (2017)
  25. Electron cryomicroscopy as a powerful tool in biomedical research. Quentin D, Raunser S. J. Mol. Med. 96 483-493 (2018)
  26. Recent advances in understanding RNA polymerase II structure and function. Reines D. Fac Rev 9 11 (2020)
  27. TFIIH: New Discoveries Regarding its Mechanisms and Impact on Cancer Treatment. Zurita M, Cruz-Becerra G. J Cancer 7 2258-2265 (2016)
  28. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Roeder RG. Nat. Struct. Mol. Biol. 26 783-791 (2019)
  29. Dysregulated Transcriptional Control in Prostate Cancer. Baumgart SJ, Nevedomskaya E, Haendler B. Int J Mol Sci 20 (2019)
  30. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Serna M. Front Mol Biosci 6 33 (2019)
  31. Interaction modules that impart specificity to disordered protein. Cermakova K, Hodges HC. Trends Biochem Sci 48 477-490 (2023)
  32. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Biomolecules 12 685 (2022)
  33. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. Savinkova LK, Sharypova EB, Kolchanov NA. Plants (Basel) 12 1000 (2023)
  34. Protein motion in the nucleus: from anomalous diffusion to weak interactions. Woringer M, Darzacq X. Biochem. Soc. Trans. 46 945-956 (2018)
  35. Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators. Malik S, Roeder RG. Nat Rev Genet (2023)
  36. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. Front Cell Dev Biol 9 666508 (2021)
  37. Transcription factor IID parks and drives preinitiation complexes at sharp or broad promoters. Bernardini A, Hollinger C, Willgenss D, Müller F, Devys D, Tora L. Trends Biochem Sci 48 839-848 (2023)

Articles citing this publication (92)

  1. Near-atomic resolution visualization of human transcription promoter opening. He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Nature 533 359-365 (2016)
  2. Mediator structure and rearrangements required for holoenzyme formation. Tsai KL, Yu X, Gopalan S, Chao TC, Zhang Y, Florens L, Washburn MP, Murakami K, Conaway RC, Conaway JW, Asturias FJ. Nature 544 196-201 (2017)
  3. Paused RNA polymerase II inhibits new transcriptional initiation. Shao W, Zeitlinger J. Nat. Genet. 49 1045-1051 (2017)
  4. Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Mol. Cell 68 118-129.e5 (2017)
  5. Structures of transcription pre-initiation complex with TFIIH and Mediator. Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H, Cramer P. Nature 551 204-209 (2017)
  6. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG, Lavis LD, Revyakin A, Tjian R. Genes Dev. 30 2106-2118 (2016)
  7. Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. Grünberg S, Henikoff S, Hahn S, Zentner GE. EMBO J. 35 2435-2446 (2016)
  8. Multiple direct interactions of TBP with the MYC oncoprotein. Wei Y, Resetca D, Li Z, Johansson-Åkhe I, Ahlner A, Helander S, Wallenhammar A, Morad V, Raught B, Wallner B, Kokubo T, Tong Y, Penn LZ, Sunnerhagen M. Nat Struct Mol Biol 26 1035-1043 (2019)
  9. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schübeler D. Mol. Cell 67 411-422.e4 (2017)
  10. Structure of the human Mediator-bound transcription preinitiation complex. Abdella R, Talyzina A, Chen S, Inouye CJ, Tjian R, He Y. Science 372 52-56 (2021)
  11. CDK9-dependent RNA polymerase II pausing controls transcription initiation. Gressel S, Schwalb B, Decker TM, Qin W, Leonhardt H, Eick D, Cramer P. Elife 6 (2017)
  12. A unified view of the sequence and functional organization of the human RNA polymerase II promoter. Luse DS, Parida M, Spector BM, Nilson KA, Price DH. Nucleic Acids Res 48 7767-7785 (2020)
  13. A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Xu Y, Milazzo JP, Somerville TDD, Tarumoto Y, Huang YH, Ostrander EL, Wilkinson JE, Challen GA, Vakoc CR. Cancer Cell 33 13-28.e8 (2018)
  14. Crystal Structure of Human General Transcription Factor TFIIE at Atomic Resolution. Miwa K, Kojima R, Obita T, Ohkuma Y, Tamura Y, Mizuguchi M. J. Mol. Biol. 428 4258-4266 (2016)
  15. Fluorescence-Detected Conformational Changes in Duplex DNA in Open Complex Formation by Escherichia coli RNA Polymerase: Upstream Wrapping and Downstream Bending Precede Clamp Opening and Insertion of the Downstream Duplex. Sreenivasan R, Shkel IA, Chhabra M, Drennan A, Heitkamp S, Wang HC, Sridevi MA, Plaskon D, McNerney C, Callies K, Cimperman CK, Record MT. Biochemistry 59 1565-1581 (2020)
  16. Genome-wide uniformity of human 'open' pre-initiation complexes. Lai WK, Pugh BF. Genome Res. 27 15-26 (2017)
  17. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Elife 6 (2017)
  18. Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains. Bouché L, Christ CD, Siegel S, Fernández-Montalván AE, Holton SJ, Fedorov O, Ter Laak A, Sugawara T, Stöckigt D, Tallant C, Bennett J, Monteiro O, Díaz-Sáez L, Siejka P, Meier J, Pütter V, Weiske J, Müller S, Huber KVM, Hartung IV, Haendler B. J. Med. Chem. 60 4002-4022 (2017)
  19. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Heymann JB. Protein Sci. 27 159-171 (2018)
  20. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Pimmett VL, Dejean M, Fernandez C, Trullo A, Bertrand E, Radulescu O, Lagha M. Nat Commun 12 4504 (2021)
  21. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Patel AB, Louder RK, Greber BJ, Grünberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E. Science 362 (2018)
  22. Two roles for the yeast transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA. Donczew R, Warfield L, Pacheco D, Erijman A, Hahn S. Elife 9 (2020)
  23. A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Peng Y, Cao S, Kiselar J, Xiao X, Du Z, Hsieh A, Ko S, Chen Y, Agrawal P, Zheng W, Shi W, Jiang W, Yang L, Chance MR, Surewicz WK, Buck M, Yang S. Structure 27 229-240.e4 (2019)
  24. Structural visualization of the p53/RNA polymerase II assembly. Singh SK, Qiao Z, Song L, Jani V, Rice W, Eng E, Coleman RA, Liu WL. Genes Dev. 30 2527-2537 (2016)
  25. TAF1 Transcripts and Neurofilament Light Chain as Biomarkers for X-linked Dystonia-Parkinsonism. Al Ali J, Vaine CA, Shah S, Campion L, Hakoum A, Supnet ML, Acuña P, Aldykiewicz G, Multhaupt-Buell T, Ganza NGM, Lagarde JBB, De Guzman JK, Go C, Currall B, Trombetta B, Webb PK, Talkowski M, Arnold SE, Cheah PS, Ito N, Sharma N, Bragg DC, Ozelius L, Breakefield XO. Mov Disord 36 206-215 (2021)
  26. A sequence-specific core promoter-binding transcription factor recruits TRF2 to coordinately transcribe ribosomal protein genes. Baumann DG, Gilmour DS. Nucleic Acids Res. 45 10481-10491 (2017)
  27. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S. Genes Dev. 31 2162-2174 (2017)
  28. Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. Tawamie H, Martianov I, Wohlfahrt N, Buchert R, Mengus G, Uebe S, Janiri L, Hirsch FW, Schumacher J, Ferrazzi F, Sticht H, Reis A, Davidson I, Colombo R, Abou Jamra R. Am. J. Hum. Genet. 100 555-561 (2017)
  29. Structural biology: Snapshots of transcription initiation. Hahn S, Buratowski S. Nature 533 331-332 (2016)
  30. TFIID Enables RNA Polymerase II Promoter-Proximal Pausing. Fant CB, Levandowski CB, Gupta K, Maas ZL, Moir J, Rubin JD, Sawyer A, Esbin MN, Rimel JK, Luyties O, Marr MT, Berger I, Dowell RD, Taatjes DJ. Mol Cell 78 785-793.e8 (2020)
  31. A close-up look at the spliceosome, at last. Abelson J. Proc. Natl. Acad. Sci. U.S.A. 114 4288-4293 (2017)
  32. Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. Gilbertson S, Federspiel JD, Hartenian E, Cristea IM, Glaunsinger B. Elife 7 (2018)
  33. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Bruzzone MJ, Grünberg S, Kubik S, Zentner GE, Shore D. Genes Dev. 32 1252-1265 (2018)
  34. Epigenetics and transcription regulation during eukaryotic diversification: the saga of TFIID. Antonova SV, Boeren J, Timmers HTM, Snel B. Genes Dev 33 888-902 (2019)
  35. Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters. Donczew R, Hahn S. Mol. Cell. Biol. 38 (2018)
  36. Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer. Kim YJ, Rhee K, Liu J, Jeammet S, Turner MA, Small SJ, Garcia HG. Elife 11 e73395 (2022)
  37. Taf2 mediates DNA binding of Taf14. Klein BJ, Feigerle JT, Zhang J, Ebmeier CC, Fan L, Singh RK, Wang WW, Schmitt LR, Lee T, Hansen KC, Liu WR, Wang YX, Strahl BD, Anthony Weil P, Kutateladze TG. Nat Commun 13 3177 (2022)
  38. The C Terminus of the RNA Polymerase II Transcription Factor IID (TFIID) Subunit Taf2 Mediates Stable Association of Subunit Taf14 into the Yeast TFIID Complex. Feigerle JT, Weil PA. J. Biol. Chem. 291 22721-22740 (2016)
  39. What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. Cianfrocco MA, Kellogg EH. J Chem Inf Model 60 2458-2469 (2020)
  40. p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Coleman RA, Qiao Z, Singh SK, Peng CS, Cianfrocco M, Zhang Z, Piasecka A, Aldeborgh H, Basishvili G, Liu WL. Mol. Cell. Biol. 37 (2017)
  41. ARMC5 is part of an RPB1-specific ubiquitin ligase implicated in adrenal hyperplasia. Lao L, Bourdeau I, Gagliardi L, He X, Shi W, Hao B, Tan M, Hu Y, Peng J, Coulombe B, Torpy DJ, Scott HS, Lacroix A, Luo H, Wu J. Nucleic Acids Res 50 6343-6367 (2022)
  42. Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Antonova SV, Haffke M, Corradini E, Mikuciunas M, Low TY, Signor L, van Es RM, Gupta K, Scheer E, Vos HR, Tora L, Heck AJR, Timmers HTM, Berger I. Nat. Struct. Mol. Biol. 25 1119-1127 (2018)
  43. Corrigendum: Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E. Nature 536 112 (2016)
  44. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Elife 10 e58342 (2021)
  45. Functionally distinct promoter classes initiate transcription via different mechanisms reflected in focused versus dispersed initiation patterns. Serebreni L, Pleyer LM, Haberle V, Hendy O, Vlasova A, Loubiere V, Nemčko F, Bergauer K, Roitinger E, Mechtler K, Stark A. EMBO J 42 e113519 (2023)
  46. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Laktionov PP, Maksimov DA, Romanov SE, Antoshina PA, Posukh OV, White-Cooper H, Koryakov DE, Belyakin SN. Epigenetics Chromatin 11 14 (2018)
  47. Let the structural symphony begin. Ornes S. Nature 536 361-363 (2016)
  48. Measuring dynamics of eukaryotic transcription initiation: Challenges, insights and opportunities. Zhang Z, Tjian R. Transcription 9 159-165 (2018)
  49. Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. Ravarani CNJ, Flock T, Chavali S, Anandapadamanaban M, Babu MM, Balaji S. Nat Commun 11 2384 (2020)
  50. Molecular structure of promoter-bound yeast TFIID. Kolesnikova O, Ben-Shem A, Luo J, Ranish J, Schultz P, Papai G. Nat Commun 9 4666 (2018)
  51. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. Cramer P. J. Mol. Biol. 429 2603-2610 (2017)
  52. Structural dynamics and DNA interaction of human TFIID. Nogales E, Fang J, Louder RK. Transcription 8 55-60 (2017)
  53. The Pol II preinitiation complex (PIC) influences Mediator binding but not promoter-enhancer looping. Sun F, Sun T, Kronenberg M, Tan X, Huang C, Carey MF. Genes Dev 35 1175-1189 (2021)
  54. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Ma W, Zou L, Zhiyuan JI, Xiameng XU, Zhengyin XU, Yang Y, Alfano JR, Chen G. Mol. Plant Pathol. 19 2248-2262 (2018)
  55. A new era of studying p53-mediated transcription activation. Liu WL, Coleman RA, Singh SK. Transcription 9 102-107 (2018)
  56. Anchor: trans-cell type prediction of transcription factor binding sites. Li H, Quang D, Guan Y. Genome Res. 29 281-292 (2019)
  57. BIM and NOXA are mitochondrial effectors of TAF6δ-driven apoptosis. Delannoy A, Wilhelm E, Eilebrecht S, Alvarado-Cuevas EM, Benecke AG, Bell B. Cell Death Dis 9 70 (2018)
  58. Calpains as novel players in the molecular pathogenesis of spinocerebellar ataxia type 17. Weber JJ, Anger SC, Pereira Sena P, Incebacak Eltemur RD, Huridou C, Fath F, Gross C, Casadei N, Riess O, Nguyen HP. Cell Mol Life Sci 79 262 (2022)
  59. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Petrenko N, Struhl K. Elife 10 e67964 (2021)
  60. Computational identification and experimental characterization of preferred downstream positions in human core promoters. Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T. PLoS Comput Biol 17 e1009256 (2021)
  61. Control of human gene expression: High abundance of divergent transcription in genes containing both INR and BRE elements in the core promoter. Brown JC. PLoS ONE 13 e0202927 (2018)
  62. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Biol Open 12 bio059905 (2023)
  63. Differential dependencies of human RNA polymerase II promoters on TBP, TAF1, TFIIB and XPB. Santana JF, Collins GS, Parida M, Luse DS, Price DH. Nucleic Acids Res 50 9127-9148 (2022)
  64. Distinctive regulatory architectures of germline-active and somatic genes in C. elegans. Serizay J, Dong Y, Jänes J, Chesney M, Cerrato C, Ahringer J. Genome Res 30 1752-1765 (2020)
  65. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos. Yokoshi M, Kawasaki K, Cambón M, Fukaya T. Nucleic Acids Res 50 92-107 (2022)
  66. Exogenous Chemical Exposure Increased Transcription Levels of the Host Virus Receptor Involving Coronavirus Infection. Jin X, Zhang J, Li Y, Zhang Z, Cui T, Wang Y, Yao L, Yang X, Qu G, Zheng Y, Jiang G. Environ Sci Technol 56 1854-1863 (2022)
  67. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours. Yu X, Bai Y, Han B, Ju M, Tang T, Shen L, Li M, Yang L, Zhang Z, Hu G, Chao J, Zhang Y, Yao H. J Extracell Vesicles 11 e12185 (2022)
  68. Herpes Simplex Virus Type 2 Infection-Induced Expression of CXCR3 Ligands Promotes CD4+ T Cell Migration and Is Regulated by the Viral Immediate-Early Protein ICP4. Zhang M, Deng X, Guan X, Geng L, Fu M, Zhang B, Chen R, Hu H, Hu K, Zhang D, Li M, Liu Y, Gong S, Hu Q. Front Immunol 9 2932 (2018)
  69. Hierarchical TAF1-dependent co-translational assembly of the basal transcription factor TFIID. Bernardini A, Mukherjee P, Scheer E, Kamenova I, Antonova S, Mendoza Sanchez PK, Yayli G, Morlet B, Timmers HTM, Tora L. Nat Struct Mol Biol (2023)
  70. Identification of the human DPR core promoter element using machine learning. Vo Ngoc L, Huang CY, Cassidy CJ, Medrano C, Kadonaga JT. Nature 585 459-463 (2020)
  71. In vitro assembly and proteomic analysis of RNA polymerase II complexes. Joo YJ, Ficarro SB, Marto JA, Buratowski S. Methods 159-160 96-104 (2019)
  72. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Curr Genet 69 289-300 (2023)
  73. Insight into promoter clearance by RNA polymerase II. Luse DS. Proc. Natl. Acad. Sci. U.S.A. 116 22426-22428 (2019)
  74. Loss of TAF8 causes TFIID dysfunction and p53-mediated apoptotic neuronal cell death. El-Saafin F, Bergamasco MI, Chen Y, May RE, Esakky P, Hediyeh-Zadeh S, Dixon M, Wilcox S, Davis MJ, Strasser A, Smyth GK, Thomas T, Voss AK. Cell Death Differ 29 1013-1027 (2022)
  75. Mechanism of RNA polymerase I selection by transcription factor UAF. Baudin F, Murciano B, Fung HKH, Fromm SA, Mattei S, Mahamid J, Müller CW. Sci Adv 8 eabn5725 (2022)
  76. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters. Dergai O, Cousin P, Gouge J, Satia K, Praz V, Kuhlman T, Lhôte P, Vannini A, Hernandez N. Genes Dev. 32 711-722 (2018)
  77. Model-based characterization of the equilibrium dynamics of transcription initiation and promoter-proximal pausing in human cells. Zhao Y, Liu L, Hassett R, Siepel A. Nucleic Acids Res 51 e106 (2023)
  78. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis. Hintze S, Engelhardt M, van Diepen L, Witt E, Schüller HJ. Mol. Microbiol. 106 876-890 (2017)
  79. Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. Dahiya R, Natarajan K. FEBS J. 285 1491-1510 (2018)
  80. Neuronal-specific microexon splicing of TAF1 mRNA is directly regulated by SRRM4/nSR100. Capponi S, Stöffler N, Irimia M, Van Schaik FMA, Ondik MM, Biniossek ML, Lehmann L, Mitschke J, Vermunt MW, Creyghton MP, Graybiel AM, Reinheckel T, Schilling O, Blencowe BJ, Crittenden JR, Timmers HTM. RNA Biol 17 62-74 (2020)
  81. Profile of Eva Nogales. Davis TH. Proc. Natl. Acad. Sci. U.S.A. 113 9395-9397 (2016)
  82. Promoter Haplotypes of the ABCB1 Gene Encoding the P-Glycoprotein Differentially Affect Its Promoter Activity by Altering Transcription Factor Binding. Speidel JT, Xu M, Abdel-Rahman SZ. DNA Cell Biol. 37 973-981 (2018)
  83. Promoter-proximal nucleosomes attenuate RNA polymerase II transcription through TFIID. Fisher MJ, Luse DS. J Biol Chem 299 104928 (2023)
  84. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. Shao W, Alcantara SG, Zeitlinger J. Elife 8 (2019)
  85. SVA insertion in X-linked Dystonia Parkinsonism alters histone H3 acetylation associated with TAF1 gene. Petrozziello T, Dios AM, Mueller KA, Vaine CA, Hendriks WT, Glajch KE, Mills AN, Mangkalaphiban K, Penney EB, Ito N, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña G, Sharma N, Ozelius LJ, Bragg DC, Sadri-Vakili G. PLoS One 15 e0243655 (2020)
  86. Same same but different: The evolution of TBP in archaea and their eukaryotic offspring. Blombach F, Grohmann D. Transcription 8 162-168 (2017)
  87. TAF1 inhibitor Bay-299 induces cell death in acute myeloid leukemia. Zhou L, Yao Q, Ma L, Li H, Chen J. Transl Cancer Res 10 5307-5318 (2021)
  88. TAF7 is a heat-inducible unstable protein and is required for sustained expression of heat shock protein genes. Nagashimada M, Ueda T, Ishita Y, Sakurai H. FEBS J. 285 3215-3224 (2018)
  89. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. J Mol Cell Biol 10 33-47 (2018)
  90. The genetic polymorphisms at the promoter region of HLA-DQB1 gene, creating responsive elements for NF1/CTF and converting the TFII-D binding site to GR-alpha. Saify K. Mol Biol Res Commun 12 51-55 (2023)
  91. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. PLoS Pathog. 14 e1006980 (2018)
  92. Zinc knuckle of TAF1 is a DNA binding module critical for TFIID promoter occupancy. Curran EC, Wang H, Hinds TR, Zheng N, Wang EH. Sci Rep 8 4630 (2018)