5flx Citations

Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.

Abstract

Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.

Reviews - 5flx mentioned but not cited (2)

  1. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Beckmann BM, Castello A, Medenbach J. Pflugers Arch. 468 1029-1040 (2016)
  2. Dynamics of IRES-mediated translation. Johnson AG, Grosely R, Petrov AN, Puglisi JD. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)

Articles - 5flx mentioned but not cited (3)

  1. Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA. Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Biochemistry 56 4713-4721 (2017)
  2. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CM. EMBO J. 34 3042-3058 (2015)
  3. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Sci Rep 10 14453 (2020)


Reviews citing this publication (22)

  1. The Emerging Role of RNA as a Therapeutic Target for Small Molecules. Connelly CM, Moon MH, Schneekloth JS. Cell Chem Biol 23 1077-1090 (2016)
  2. Hepatitis C Virus Replication. Tabata K, Neufeldt CJ, Bartenschlager R. Cold Spring Harb Perspect Med 10 a037093 (2020)
  3. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Yamamoto H, Unbehaun A, Spahn CMT. Trends Biochem. Sci. 42 655-668 (2017)
  4. Unconventional viral gene expression mechanisms as therapeutic targets. Ho JSY, Zhu Z, Marazzi I. Nature 593 362-371 (2021)
  5. Functional RNA structures throughout the Hepatitis C Virus genome. Adams RL, Pirakitikulr N, Pyle AM. Curr Opin Virol 24 79-86 (2017)
  6. Viral internal ribosomal entry sites: four classes for one goal. Mailliot J, Martin F. Wiley Interdiscip Rev RNA 9 (2018)
  7. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Merino F, Raunser S. Angew. Chem. Int. Ed. Engl. 56 2846-2860 (2017)
  8. Insights into Structural and Mechanistic Features of Viral IRES Elements. Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Front Microbiol 8 2629 (2017)
  9. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Cuniasse P, Tavares P, Orlova EV, Zinn-Justin S. Curr. Opin. Struct. Biol. 43 104-113 (2017)
  10. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Romero-López C, Berzal-Herranz A. Int J Mol Sci 21 (2020)
  11. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Romero-López C, Berzal-Herranz A. Front Microbiol 8 2093 (2017)
  12. New Insights into Ribosome Structure and Function. Jobe A, Liu Z, Gutierrez-Vargas C, Frank J. Cold Spring Harb Perspect Biol 11 (2019)
  13. Cellular factors involved in the hepatitis C virus life cycle. Li HC, Yang CH, Lo SY. World J Gastroenterol 27 4555-4581 (2021)
  14. Hepatitis C Virus Translation Regulation. Niepmann M, Gerresheim GK. Int J Mol Sci 21 (2020)
  15. IRES Trans-Acting Factors, Key Actors of the Stress Response. Godet AC, David F, Hantelys F, Tatin F, Lacazette E, Garmy-Susini B, Prats AC. Int J Mol Sci 20 (2019)
  16. Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Kisly I, Tamm T. Comput Struct Biotechnol J 21 1249-1261 (2023)
  17. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Lozano G, Francisco-Velilla R, Martinez-Salas E. Open Biol 8 (2018)
  18. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Arhab Y, Bulakhov AG, Pestova TV, Hellen CUT. Viruses 12 (2020)
  19. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. Miller CM, Selvam S, Fuchs G. Wiley Interdiscip Rev RNA 12 e1613 (2021)
  20. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Biochemistry (Mosc) 86 1060-1094 (2021)
  21. Ribosomal control in RNA virus-infected cells. Wang X, Zhu J, Zhang D, Liu G. Front Microbiol 13 1026887 (2022)
  22. Siblings or doppelgängers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Gray EC, Beringer DM, Meyer MM. Biochem Soc Trans 48 1941-1951 (2020)

Articles citing this publication (31)

  1. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Proc Natl Acad Sci U S A 118 (2021)
  2. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. RNA rna.078121.120 (2020)
  3. N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition. Kim GW, Siddiqui A. Proc Natl Acad Sci U S A 118 e2022024118 (2021)
  4. In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA. Diaz-Toledano R, Lozano G, Martinez-Salas E. Nucleic Acids Res. 45 1416-1432 (2017)
  5. Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome. Prokhorova IV, Akulich KA, Makeeva DS, Osterman IA, Skvortsov DA, Sergiev PV, Dontsova OA, Yusupova G, Yusupov MM, Dmitriev SE. Sci Rep 6 27720 (2016)
  6. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. Q Rev Biophys 49 e11 (2016)
  7. RACK1 on and off the ribosome. Johnson AG, Lapointe CP, Wang J, Corsepius NC, Choi J, Fuchs G, Puglisi JD. RNA 25 881-895 (2019)
  8. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Sci Rep 7 43415 (2017)
  9. A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate. Neupane R, Pisareva VP, Rodriguez CF, Pisarev AV, Fernández IS. Elife 9 (2020)
  10. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. EMBO J 41 e110581 (2022)
  11. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G. Virology 545 53-62 (2020)
  12. Roles of the 5' Untranslated Region of Nonprimate Hepacivirus in Translation Initiation and Viral Replication. Tanaka T, Otoguro T, Yamashita A, Kasai H, Fukuhara T, Matsuura Y, Moriishi K. J. Virol. 92 (2018)
  13. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Nucleic Acids Res. 45 13016-13028 (2017)
  14. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Johnson AG, Petrov AN, Fuchs G, Majzoub K, Grosely R, Choi J, Puglisi JD. Nucleic Acids Res. 46 e8 (2018)
  15. HCVIVdb: The hepatitis-C IRES variation database. Floden EW, Khawaja A, Vopálenský V, Pospíšek M. BMC Microbiol. 16 187 (2016)
  16. Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Rollins MG, Shasmal M, Meade N, Astar H, Shen PS, Walsh D. Cell Rep 36 109663 (2021)
  17. Role of aIF5B in archaeal translation initiation. Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Nucleic Acids Res 50 6532-6548 (2022)
  18. The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells. González-Almela E, Williams H, Sanz MA, Carrasco L. Front Microbiol 9 207 (2018)
  19. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Hashem Y, Frank J. Annu Rev Biophys (2018)
  20. Dual tRNA mimicry in the Cricket Paralysis Virus IRES uncovers an unexpected similarity with the Hepatitis C Virus IRES. Pisareva VP, Pisarev AV, Fernández IS. Elife 7 (2018)
  21. Genomic-Scale Interaction Involving Complementary Sequences in the Hepatitis C Virus 5'UTR Domain IIa and the RNA-Dependent RNA Polymerase Coding Region Promotes Efficient Virus Replication. Rance E, Tanner JE, Alfieri C. Viruses 11 (2018)
  22. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Nucleic Acids Res 50 1052-1068 (2022)
  23. Human ribosomal protein eS1 is engaged in cellular events related to processing and functioning of U11 snRNA. Gopanenko AV, Malygin AA, Tupikin AE, Laktionov PP, Kabilov MR, Karpova GG. Nucleic Acids Res. 45 9121-9137 (2017)
  24. Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. Gosavi D, Wower I, Beckmann IK, Hofacker IL, Wower J, Wolfinger MT, Sztuba-Solinska J. RNA Biol 19 496-506 (2022)
  25. Quasispecies Changes with Distinctive Point Mutations in the Hepatitis C Virus Internal Ribosome Entry Site (IRES) Derived from PBMCs and Plasma. Mercuri L, Thomson EC, Hughes J, Karayiannis P. Adv Virol 2018 4835252 (2018)
  26. RACK1 Regulates Poxvirus Protein Synthesis Independently of Its Role in Ribosome-Based Stress Signaling. Park C, Walsh D. J Virol 96 e0109322 (2022)
  27. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Knorr AG, Schmidt C, Tesina P, Berninghausen O, Becker T, Beatrix B, Beckmann R. Nat. Struct. Mol. Biol. 26 35-39 (2019)
  28. Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Zhou Y, Kastritis PL, Dougherty SE, Bouvette J, Hsu AL, Burbaum L, Mosalaganti S, Pfeffer S, Hagen WJH, Förster F, Borgnia MJ, Vogel C, Beck M, Bartesaghi A, Silva GM. Proc Natl Acad Sci U S A 117 22157-22166 (2020)
  29. Structures of translationally inactive mammalian ribosomes. Brown A, Baird MR, Yip MC, Murray J, Shao S. Elife 7 (2018)
  30. The 5' Untranslated Region of Human Bocavirus Capsid Transcripts Regulates Viral mRNA Biogenesis and Alternative Translation. Liu X, Hao S, Chen Z, Xu H, Wang H, Huang M, Guan W. J. Virol. 92 (2018)
  31. miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5' terminus. Chahal J, Gebert LFR, Gan HH, Camacho E, Gunsalus KC, MacRae IJ, Sagan SM. Nucleic Acids Res. 47 5307-5324 (2019)