5dcn Citations

TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export.

Abstract

Hereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin β-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown. Here, we show that TECPR2 associates with several trafficking components, among them the COPII coat protein SEC24D. TECPR2 is required for stabilization of SEC24D protein levels, maintenance of functional ER exit sites (ERES), and efficient ER export in a manner dependent on binding to lipidated LC3C. TECPR2-deficient HSP patient cells display alterations in SEC24D abundance and ER export efficiency. Additionally, TECPR2 and LC3C are required for autophagosome formation, possibly through maintaining functional ERES. Collectively, these results reveal that TECPR2 functions as molecular scaffold linking early secretion pathway and autophagy.

Reviews citing this publication (35)

  1. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC. Neuron 93 1015-1034 (2017)
  2. Digesting the Expanding Mechanisms of Autophagy. Ktistakis NT, Tooze SA. Trends Cell Biol. 26 624-635 (2016)
  3. LC3/GABARAP family proteins: autophagy-(un)related functions. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. FASEB J. 30 3961-3978 (2016)
  4. Mechanisms of Autophagy Initiation. Hurley JH, Young LN. Annu. Rev. Biochem. 86 225-244 (2017)
  5. Autophagy in major human diseases. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon HU, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. EMBO J 40 e108863 (2021)
  6. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M. Brain 139 317-337 (2016)
  7. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. Lee YK, Lee JA. BMB Rep 49 424-430 (2016)
  8. The Journey of the Autophagosome through Mammalian Cell Organelles and Membranes. Molino D, Zemirli N, Codogno P, Morel E. J. Mol. Biol. 429 497-514 (2017)
  9. Crosstalk between the Secretory and Autophagy Pathways Regulates Autophagosome Formation. Davis S, Wang J, Ferro-Novick S. Dev. Cell 41 23-32 (2017)
  10. The link between autophagy and secretion: a story of multitasking proteins. Farhan H, Kundu M, Ferro-Novick S. Mol. Biol. Cell 28 1161-1164 (2017)
  11. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? Kirkin V. J Mol Biol 432 3-27 (2020)
  12. Lipids and membrane-associated proteins in autophagy. Li L, Tong M, Fu Y, Chen F, Zhang S, Chen H, Ma X, Li D, Liu X, Zhong Q. Protein Cell 12 520-544 (2021)
  13. Mendelian neurodegenerative disease genes involved in autophagy. Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Cell Discov 6 24 (2020)
  14. Activation and targeting of ATG8 protein lipidation. Martens S, Fracchiolla D. Cell Discov 6 23 (2020)
  15. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Haidar M, Timmerman V. Front Mol Neurosci 10 143 (2017)
  16. Modulation of the secretory pathway by amino-acid starvation. van Leeuwen W, van der Krift F, Rabouille C. J. Cell Biol. 217 2261-2271 (2018)
  17. ER-to-Golgi Trafficking and Its Implication in Neurological Diseases. Wang B, Stanford KR, Kundu M. Cells 9 (2020)
  18. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. McCaughey J, Stephens DJ. Histochem. Cell Biol. 150 119-131 (2018)
  19. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Nishimura T, Tooze SA. Cell Discov 6 32 (2020)
  20. Impairment of Lysosome Function and Autophagy in Rare Neurodegenerative Diseases. Darios F, Stevanin G. J Mol Biol 432 2714-2734 (2020)
  21. Towards a better understanding of the neuro-developmental role of autophagy in sickness and in health. Zapata-Muñoz J, Villarejo-Zori B, Largo-Barrientos P, Boya P. Cell Stress 5 99-118 (2021)
  22. Autophagy in Rare (NonLysosomal) Neurodegenerative Diseases. Zatyka M, Sarkar S, Barrett T. J Mol Biol 432 2735-2753 (2020)
  23. Autophagy in childhood neurological disorders. Zhu Y, Runwal G, Obrocki P, Rubinsztein DC. Dev Med Child Neurol 61 639-645 (2019)
  24. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Toupenet Marchesi L, Leblanc M, Stevanin G. Cells 10 1678 (2021)
  25. ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Sonda S, Pendin D, Daga A. Cells 10 2870 (2021)
  26. Genetic pain loss disorders. Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Nat Rev Dis Primers 8 41 (2022)
  27. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Lystad AH, Simonsen A. Cells 8 (2019)
  28. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Front Cell Dev Biol 8 420 (2020)
  29. The different autophagy degradation pathways and neurodegeneration. Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. Neuron 110 935-966 (2022)
  30. Canonical and non-canonical autophagy pathways in microglia. Jülg J, Strohm L, Behrends C. Mol Cell Biol MCB.00389-20 (2020)
  31. Cytoprotective, Cytotoxic and Cytostatic Roles of Autophagy in Response to BET Inhibitors. Elshazly AM, Gewirtz DA. Int J Mol Sci 24 12669 (2023)
  32. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Tapia D, Cavieres VA, Burgos PV, Cancino J. Front Cell Dev Biol 11 1069256 (2023)
  33. Membrane trafficking in health and disease. Yarwood R, Hellicar J, Woodman PG, Lowe M. Dis Model Mech 13 (2020)
  34. Reconstruction of destruction - in vitro reconstitution methods in autophagy research. Moparthi SB, Wollert T. J. Cell. Sci. 132 (2018)
  35. Syntaxin 16's Newly Deciphered Roles in Autophagy. Tang BL. Cells 8 (2019)

Articles citing this publication (36)

  1. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Sakamaki JI, Wilkinson S, Hahn M, Tasdemir N, O'Prey J, Clark W, Hedley A, Nixon C, Long JS, New M, Van Acker T, Tooze SA, Lowe SW, Dikic I, Ryan KM. Mol. Cell 66 517-532.e9 (2017)
  2. Structural and functional analysis of the GABARAP interaction motif (GIM). Rogov VV, Stolz A, Ravichandran AC, Rios-Szwed DO, Suzuki H, Kniss A, Löhr F, Wakatsuki S, Dötsch V, Dikic I, Dobson RC, McEwan DG. EMBO Rep. 18 1382-1396 (2017)
  3. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch AK, Müller S, Dikic I, Mittelbronn M, Behrends C. Elife 6 (2017)
  4. Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. Stolz A, Putyrski M, Kutle I, Huber J, Wang C, Major V, Sidhu SS, Youle RJ, Rogov VV, Dötsch V, Ernst A, Dikic I. EMBO J. 36 549-564 (2017)
  5. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Cox NJ, Unlu G, Bisnett BJ, Meister TR, Condon BM, Luo PM, Smith TJ, Hanna M, Chhetri A, Soderblom EJ, Audhya A, Knapik EW, Boyce M. Biochemistry 57 91-107 (2018)
  6. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. Gan W, Zhang C, Siu KY, Satoh A, Tanner JA, Yu S. BMC Cell Biol. 18 22 (2017)
  7. Lysosomal targeting of autophagosomes by the TECPR domain of TECPR2. Fraiberg M, Tamim-Yecheskel BC, Kokabi K, Subic N, Heimer G, Eck F, Nalbach K, Behrends C, Ben-Zeev B, Shatz O, Elazar Z. Autophagy 17 3096-3108 (2021)
  8. A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation. Tamim-Yecheskel BC, Fraiberg M, Kokabi K, Freud S, Shatz O, Marvaldi L, Subic N, Brenner O, Tsoory M, Eilam-Altstadter R, Biton I, Savidor A, Dezorella N, Heimer G, Behrends C, Ben-Zeev B, Elazar Z. Autophagy 17 3082-3095 (2021)
  9. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Dragich JM, Kuwajima T, Hirose-Ikeda M, Yoon MS, Eenjes E, Bosco JR, Fox LM, Lystad AH, Oo TF, Yarygina O, Mita T, Waguri S, Ichimura Y, Komatsu M, Simonsen A, Burke RE, Mason CA, Yamamoto A. Elife 5 (2016)
  10. No ATG8s, no problem? How LC3/GABARAP proteins contribute to autophagy. Martens S. J. Cell Biol. 215 761-763 (2016)
  11. An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5. Huber J, Obata M, Gruber J, Akutsu M, Löhr F, Rogova N, Güntert P, Dikic I, Kirkin V, Komatsu M, Dötsch V, Rogov VV. Autophagy 16 256-270 (2020)
  12. TFG binds LC3C to regulate ULK1 localization and autophagosome formation. Carinci M, Testa B, Bordi M, Milletti G, Bonora M, Antonucci L, Ferraina C, Carro M, Kumar M, Ceglie D, Eck F, Nardacci R, le Guerroué F, Petrini S, Soriano ME, Caruana I, Doria V, Manifava M, Peron C, Lambrughi M, Tiranti V, Behrends C, Papaleo E, Pinton P, Giorgi C, Ktistakis NT, Locatelli F, Nazio F, Cecconi F. EMBO J 40 e103563 (2021)
  13. Novel Insights into the Cellular Localization and Regulation of the Autophagosomal Proteins LC3A, LC3B and LC3C. Baeken MW, Weckmann K, Diefenthäler P, Schulte J, Yusifli K, Moosmann B, Behl C, Hajieva P. Cells 9 E2315 (2020)
  14. TECPR1 conjugates LC3 to damaged endomembranes upon detection of sphingomyelin exposure. Boyle KB, Ellison CJ, Elliott PR, Schuschnig M, Grimes K, Dionne MS, Sasakawa C, Munro S, Martens S, Randow F. EMBO J 42 e113012 (2023)
  15. Autophagy-Related Protein MAP1LC3C Plays a Crucial Role in Odontogenic Differentiation of Human Dental Pulp Cells. Cho HS, Park SY, Kim SM, Kim WJ, Jung JY. Tissue Eng Regen Med 18 265-277 (2021)
  16. Ecological divergence in sympatry causes gene misexpression in hybrids. McGirr JA, Martin CH. Mol Ecol 29 2707-2721 (2020)
  17. Mass spectrometry proteomics reveals a function for mammalian CALCOCO1 in MTOR-regulated selective autophagy. Stefely JA, Zhang Y, Freiberger EC, Kwiecien NW, Thomas HE, Davis AM, Lowry ND, Vincent CE, Shishkova E, Clark NA, Medvedovic M, Coon JJ, Pagliarini DJ, Mercer CA. Autophagy 16 2219-2237 (2020)
  18. Comment Autophagy gets to the bone. Cinque L, Forrester A, Settembre C. Cell Cycle 15 871-872 (2016)
  19. Developing antisense oligonucleotides for a TECPR2 mutation-induced, ultra-rare neurological disorder using patient-derived cellular models. Williams LA, Gerber DJ, Elder A, Tseng WC, Baru V, Delaney-Busch N, Ambrosi C, Mahimkar G, Joshi V, Shah H, Harikrishnan K, Upadhyay H, Rajendran SH, Dhandapani A, Meier J, Ryan SJ, Lewarch C, Black L, Douville J, Cinquino S, Legakis H, Nalbach K, Behrends C, Sato A, Galluzzi L, Yu TW, Brown D, Agrawal S, Margulies D, Kopin A, Dempsey GT. Mol Ther Nucleic Acids 29 189-203 (2022)
  20. Molecular determinants regulating selective binding of autophagy adapters and receptors to ATG8 proteins. Wirth M, Zhang W, Razi M, Nyoni L, Joshi D, O'Reilly N, Johansen T, Tooze SA, Mouilleron S. Nat Commun 10 2055 (2019)
  21. Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. Wirth M, Mouilleron S, Zhang W, Sjøttem E, Princely Abudu Y, Jain A, Lauritz Olsvik H, Bruun JA, Razi M, Jefferies HBJ, Lee R, Joshi D, O'Reilly N, Johansen T, Tooze SA. J Mol Biol 433 166987 (2021)
  22. The ULK1-FBXW5-SEC23B nexus controls autophagy. Jeong YT, Simoneschi D, Keegan S, Melville D, Adler NS, Saraf A, Florens L, Washburn MP, Cavasotto CN, Fenyö D, Cuervo AM, Rossi M, Pagano M. Elife 7 (2018)
  23. The crystal structure of the FAM134B-GABARAP complex provides mechanistic insights into the selective binding of FAM134 to the GABARAP subfamily. Zhao J, Li Z, Li J. FEBS Open Bio 12 320-331 (2022)
  24. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. Autophagy 18 496-517 (2022)
  25. Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. Mann D, Fromm SA, Martinez-Sanchez A, Gopaldass N, Choy R, Mayer A, Sachse C. Nat Commun 14 8086 (2023)
  26. Endosomal LC3C-pathway selectively targets plasma membrane cargo for autophagic degradation. Coelho PP, Hesketh GG, Pedersen A, Kuzmin E, Fortier AN, Bell ES, Ratcliffe CDH, Gingras AC, Park M. Nat Commun 13 3812 (2022)
  27. Human ubiquitin-like proteins as central coordinators in autophagy. Mohan J, Wollert T. Interface Focus 8 20180025 (2018)
  28. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. Gu Y, Princely Abudu Y, Kumar S, Bissa B, Choi SW, Jia J, Lazarou M, Eskelinen EL, Johansen T, Deretic V. EMBO J. 38 e101994 (2019)
  29. Mutational Mtc6p attenuates autophagy and improves secretory expression of heterologous proteins in Kluyveromyces marxianus. Liu Y, Mo WJ, Shi TF, Wang MZ, Zhou JG, Yu Y, Yew WS, Lu H. Microb. Cell Fact. 17 144 (2018)
  30. Novel detection of mutation in the TECPR2 gene in a Chinese hereditary spastic paraplegia 49 patient: a case report. Guan Y, Lu H, Zuo W, Wang X, Wang S, Wang X, Liu F, Jia K, Gao R, Wu H, Shi Z, Ji Y. BMC Neurol 22 47 (2022)
  31. Nutrient deprivation alters the rate of COPII subunit recruitment at ER subdomains to tune secretory protein transport. Kasberg W, Luong P, Swift KA, Audhya A. Nat Commun 14 8140 (2023)
  32. Letter Progressive cerebellar atrophy caused by heterozygous TECPR2 mutations. Ramsey K, Belnap N, Bonfitto A, Jepsen W, Naymik M, Sanchez-Castillo M, Craig DW, Szelinger S, Huentelman MJ, Narayanan V, Rangasamy S. Mol Genet Genomic Med 10 e1857 (2022)
  33. Selective MAP1LC3C (LC3C) autophagy requires noncanonical regulators and the C-terminal peptide. Bischoff ME, Zang Y, Chu J, Price AD, Ehmer B, Talbot NJ, Newbold MJ, Paul A, Guan JL, Plas DR, Meller J, Czyzyk-Krzeska MF. J Cell Biol 220 e202004182 (2021)
  34. Spatial proteomics reveals secretory pathway disturbances caused by neuropathy-associated TECPR2. Nalbach K, Schifferer M, Bhattacharya D, Ho-Xuan H, Tseng W, Williams LA, Stolz A, Lichtenthaler SF, Elazar Z, Behrends C. Nat Commun 14 870 (2023)
  35. TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes. Wetzel L, Blanchard S, Rama S, Beier V, Kaufmann A, Wollert T. Nat Commun 11 2993 (2020)
  36. Case Reports TECPR2 mutation-associated respiratory dysregulation: more than central apnea. Patwari PP, Wolfe LF, Sharma GD, Berry-Kravis E. J Clin Sleep Med 16 977-982 (2020)