5a6v Citations

Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation.

J Lipid Res 56 2348-58 (2015)
Cited: 43 times
EuropePMC logo PMID: 26447231

Abstract

Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or "interfacial activation," with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases.

Reviews - 5a6v mentioned but not cited (2)

  1. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Magalhães RP, Cunha JM, Sousa SF. Int J Mol Sci 22 11257 (2021)
  2. Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM. Int J Mol Sci 23 15394 (2022)

Articles - 5a6v mentioned but not cited (5)

  1. Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. Stauch B, Fisher SJ, Cianci M. J Lipid Res 56 2348-2358 (2015)
  2. Machine learning modeling of family wide enzyme-substrate specificity screens. Goldman S, Das R, Yang KK, Coley CW. PLoS Comput Biol 18 e1009853 (2022)
  3. In Silico Evaluation of Enzymatic Tunnels in the Biotransformation of α-Tocopherol Esters. Azevedo TSM, Silva LKB, Lima ÁS, Pereira MM, Franceschi E, Faria Soares CM. Front Bioeng Biotechnol 9 805059 (2021)
  4. Energetic and Kinetic Origins of CALB Interfacial Activation Revealed by PaCS-MD/MSM. Wijaya TN, Kitao A. J Phys Chem B 127 7431-7441 (2023)
  5. Metagenomic discovery of lipases with predicted structural similarity to Candida antarctica lipase B. Jaito N, Kaewsawat N, Phetlum S, Uengwetwanit T. PLoS One 18 e0295397 (2023)


Reviews citing this publication (5)

  1. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. Front Bioeng Biotechnol 5 16 (2017)
  2. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Jiang Y, Loos K. Polymers (Basel) 8 E243 (2016)
  3. Enzymatic Remediation of Polyethylene Terephthalate (PET)-Based Polymers for Effective Management of Plastic Wastes: An Overview. Maurya A, Bhattacharya A, Khare SK. Front Bioeng Biotechnol 8 602325 (2020)
  4. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Godoy CA, Pardo-Tamayo JS, Barbosa O. Int J Mol Sci 23 9933 (2022)
  5. An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. Khairul Anuar NFS, Huyop F, Ur-Rehman G, Abdullah F, Normi YM, Sabullah MK, Abdul Wahab R. Int J Mol Sci 23 12644 (2022)

Articles citing this publication (31)

  1. Artificial cysteine-lipases with high activity and altered catalytic mechanism created by laboratory evolution. Cen Y, Singh W, Arkin M, Moody TS, Huang M, Zhou J, Wu Q, Reetz MT. Nat Commun 10 3198 (2019)
  2. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. Wang P, He J, Sun Y, Reynolds M, Zhang L, Han S, Liang S, Sui H, Lin Y. Appl Microbiol Biotechnol 100 5883-5895 (2016)
  3. Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350. Pinheiro MP, Rios NS, Fonseca TS, Bezerra FA, Rodríguez-Castellón E, Fernandez-Lafuente R, Carlos de Mattos M, Dos Santos JCS, Gonçalves LRB. Biotechnol Prog 34 878-889 (2018)
  4. Crystal structure of a lipase from Streptomyces sp. strain W007 - implications for thermostability and regiospecificity. Zhao Z, Hou S, Lan D, Wang X, Liu J, Khan FI, Wang Y. FEBS J 284 3506-3519 (2017)
  5. A Structural Basis for 129 Xe Hyper-CEST Signal in TEM-1 β-Lactamase. Roose BW, Zemerov SD, Wang Y, Kasimova MA, Carnevale V, Dmochowski IJ. Chemphyschem 20 260-267 (2019)
  6. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Verma R, Mitchell-Koch K. Catalysts 7 212 (2017)
  7. Tailoring the Spacer Arm for Covalent Immobilization of Candida antarctica Lipase B-Thermal Stabilization by Bisepoxide-Activated Aminoalkyl Resins in Continuous-Flow Reactors. Abaházi E, Lestál D, Boros Z, Poppe L. Molecules 21 E767 (2016)
  8. Enzymatic Polymerization of PCL-PEG Co-polymers for Biomedical Applications. Figueiredo P, Almeida BC, Carvalho ATP. Front Mol Biosci 6 109 (2019)
  9. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. PLoS One 15 e0229376 (2020)
  10. The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase. Kim HJ, Lee BJ, Kwon AR. J Lipid Res 61 722-733 (2020)
  11. A novel self-activation mechanism of Candida antarctica lipase B. Luan B, Zhou R. Phys Chem Chem Phys 19 15709-15714 (2017)
  12. In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from Acinetobacter haemolyticus. Batumalaie K, Edbeib MF, Mahat NA, Huyop F, Wahab RA. J Biomol Struct Dyn 36 3077-3093 (2018)
  13. Compartmentalized cross-linked enzymatic nano-aggregates (c-CLEnA) for efficient in-flow biocatalysis. De Martino MT, Tonin F, Yewdall NA, Abdelghani M, Williams DS, Hanefeld U, Rutjes FPJT, Abdelmohsen LKEA, van Hest JCM. Chem Sci 11 2765-2769 (2020)
  14. Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2. Höck H, Engel S, Weingarten S, Keul H, Schwaneberg U, Möller M, Bocola M. Polymers (Basel) 10 E524 (2018)
  15. Thermally Stable and Reusable Ceramic Encapsulated and Cross-Linked CalB Enzyme Particles for Rapid Hydrolysis and Esterification. Song M, Chang JH. Int J Mol Sci 23 2459 (2022)
  16. Comparative Structural Analysis of Different Mycobacteriophage-Derived Mycolylarabinogalactan Esterases (Lysin B). Korany AH, Abouhmad A, Bakeer W, Essam T, Amin MA, Hatti-Kaul R, Dishisha T. Biomolecules 10 E45 (2019)
  17. Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor. Vilas Bôas RN, Lima R, Silva MVC, Freitas L, Aguiar LG, de Castro HF. Bioprocess Biosyst Eng 44 2205-2215 (2021)
  18. Enhancing the methanol tolerance of Candida antarctica lipase B by saturation mutagenesis for biodiesel preparation. Tan Z, Li X, Shi H, Yin X, Zhu X, Bilal M, Onchari MM. 3 Biotech 12 22 (2022)
  19. Improved racemate resolution of pentan-2-ol and trans-(Z)-cyclooct-5-ene-1,2-diol by lipase catalysis. Graber M, Rouillard H, Delatouche R, Fniter N, Belkhiria B, Bonnet A, Domon L, Thiéry V. J Biotechnol 238 60-68 (2016)
  20. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces. de Oliveira IP, Jara GE, Martínez L. Phys Chem Chem Phys 19 31499-31507 (2017)
  21. Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine. Li P, Zhu J, Zhang H, Wang L, Wang S, Zhang M, Wu J, Yang L, Xu G. Molecules 28 922 (2023)
  22. Candida antarctica lipase B performance in organic solvent at varying water activities studied by molecular dynamics simulations. Tjørnelund HD, Vind J, Brask J, Woodley JM, Peters GHJ. Comput Struct Biotechnol J 21 5451-5462 (2023)
  23. A Novel Lipase from Lasiodiplodia theobromae Efficiently Hydrolyses C8-C10 Methyl Esters for the Preparation of Medium-Chain Triglycerides' Precursors. Ng AMJ, Yang R, Zhang H, Xue B, Yew WS, Nguyen GKT. Int J Mol Sci 22 10339 (2021)
  24. Altering the Chain Length Specificity of a Lipase from Pleurotus citrinopileatus for the Application in Cheese Making. Broel N, Sowa MA, Manhard J, Siegl A, Weichhard E, Zorn H, Li B, Gand M. Foods 11 2608 (2022)
  25. Chemically vs Enzymatically Synthesized Polyglycerol-Based Esters: A Comparison between Their Surfactancy. Amari JFAA, Sangiorgio S, Pargoletti E, Rabuffetti M, Zaccheria F, Usuelli F, Quaranta V, Speranza G, Cappelletti G. ACS Omega 8 26405-26413 (2023)
  26. Chemoenzymatic Synthesis of the New 3-((2,3-Diacetoxypropanoyl)oxy)propane-1,2-diyl Diacetate Using Immobilized Lipase B from Candida antarctica and Pyridinium Chlorochromate as an Oxidizing Agent. Plata E, Ruiz M, Ruiz J, Ortiz C, Castillo JJ, Fernández-Lafuente R. Int J Mol Sci 21 E6501 (2020)
  27. Elucidation of pressure-induced lid movement and catalysis behavior of Rhizopus chinensis lipase. Chen G, Tang J, Miao M, Jiang B, Jin J, Feng B. Int J Biol Macromol 103 360-365 (2017)
  28. Global and Kinetic Profiles of Substrate Diffusion in Candida antarctica Lipase B: Molecular Dynamics with the Markov-State Model. Lu C, Peng X, Lu D, Liu Z. ACS Omega 5 9806-9812 (2020)
  29. Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid. Fan X, Zhang P, Fan M, Jiang P, Leng Y. Bioprocess Biosyst Eng 46 1195-1208 (2023)
  30. N-terminal lid swapping contributes to the substrate specificity and activity of thermophilic lipase TrLipE. Fang Y, Liu F, Shi Y, Yang T, Xin Y, Gu Z, Shi G, Zhang L. Front Microbiol 14 1193955 (2023)
  31. The influence of calcium ions (Ca2+) on the enzymatic hydrolysis of lipopolysaccharide aggregates to liberate free fatty acids (FFA) in aqueous solution. Pazol J, Weiss TM, Martínez CD, Quesada O, Nicolau E. JCIS Open 7 100058 (2022)