5a6c Citations

Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation.

Nat Struct Mol Biol 23 155-63 (2016)
Cited: 47 times
EuropePMC logo PMID: 26751642

Abstract

Polarized epithelia form by oriented cell divisions in which the mitotic spindle aligns parallel to the epithelial plane. To orient the mitotic spindle, cortical cues trigger the recruitment of NuMA-dynein-based motors, which pull on astral microtubules via the protein LGN. We demonstrate that the junctional protein Afadin is required for spindle orientation and correct epithelial morphogenesis of Caco-2 cysts. Molecularly, Afadin binds directly and concomitantly to F-actin and to LGN. We determined the crystallographic structure of human Afadin in complex with LGN and show that it resembles the LGN-NuMA complex. In mitosis, Afadin is necessary for cortical accumulation of LGN and NuMA above the spindle poles, in an F-actin-dependent manner. Collectively, our results depict Afadin as a molecular hub governing the enrichment of LGN and NuMA at the cortex. To our knowledge, Afadin is the first-described mechanical anchor between dynein and cortical F-actin.

Articles - 5a6c mentioned but not cited (1)

  1. Critical assessment of coiled-coil predictions based on protein structure data. Simm D, Hatje K, Waack S, Kollmar M. Sci Rep 11 12439 (2021)


Reviews citing this publication (15)

  1. Actin-microtubule crosstalk in cell biology. Dogterom M, Koenderink GH. Nat Rev Mol Cell Biol 20 38-54 (2019)
  2. Regulation of mitotic spindle orientation: an integrated view. di Pietro F, Echard A, Morin X. EMBO Rep 17 1106-1130 (2016)
  3. Spindle orientation: a question of complex positioning. Bergstralh DT, Dawney NS, St Johnston D. Development 144 1137-1145 (2017)
  4. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. Biol Cell 109 139-161 (2017)
  5. Adherens Junctions: Guardians of Cortical Development. Veeraval L, O'Leary CJ, Cooper HM. Front Cell Dev Biol 8 6 (2020)
  6. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Lechler T, Mapelli M. Nat Rev Mol Cell Biol 22 691-708 (2021)
  7. Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Kotak S. Biomolecules 9 E80 (2019)
  8. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Kiyomitsu T, Boerner S. Front Cell Dev Biol 9 653801 (2021)
  9. The crosstalk between microtubules, actin and membranes shapes cell division. Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. Open Biol 10 190314 (2020)
  10. Division orientation: disentangling shape and mechanical forces. Finegan TM, Bergstralh DT. Cell Cycle 18 1187-1198 (2019)
  11. Mitotic spindle orientation in epithelial homeostasis and plasticity. Nakajima YI. J Biochem 164 277-284 (2018)
  12. Phase Separation and Mechanical Forces in Regulating Asymmetric Cell Division of Neural Stem Cells. Zhang Y, Wei H, Wen W. Int J Mol Sci 22 10267 (2021)
  13. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Vaid S, Huttner WB. Front Cell Dev Biol 10 892922 (2022)
  14. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Donà F, Eli S, Mapelli M. Front Cell Dev Biol 10 847801 (2022)
  15. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? Zhong T, Gongye X, Wang M, Yu J. J Cell Mol Med 26 4904-4910 (2022)

Articles citing this publication (31)

  1. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Gloerich M, Bianchini JM, Siemers KA, Cohen DJ, Nelson WJ. Nat Commun 8 13996 (2017)
  2. Defective Gpsm2/Gαi3 signalling disrupts stereocilia development and growth cone actin dynamics in Chudley-McCullough syndrome. Mauriac SA, Hien YE, Bird JE, Carvalho SD, Peyroutou R, Lee SC, Moreau MM, Blanc JM, Geyser A, Medina C, Thoumine O, Beer-Hammer S, Friedman TB, Rüttiger L, Forge A, Nürnberg B, Sans N, Montcouquiol M. Nat Commun 8 14907 (2017)
  3. E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape. Hart KC, Tan J, Siemers KA, Sim JY, Pruitt BL, Nelson WJ, Gloerich M. Proc Natl Acad Sci U S A 114 E5845-E5853 (2017)
  4. Afadin cooperates with Claudin-2 to promote breast cancer metastasis. Tabariès S, McNulty A, Ouellet V, Annis MG, Dessureault M, Vinette M, Hachem Y, Lavoie B, Omeroglu A, Simon HG, Walsh LA, Kimbung S, Hedenfalk I, Siegel PM. Genes Dev 33 180-193 (2019)
  5. Elevated leptin disrupts epithelial polarity and promotes premalignant alterations in the mammary gland. Tenvooren I, Jenks MZ, Rashid H, Cook KL, Muhlemann JK, Sistrunk C, Holmes J, Wang K, Bonin K, Hodges K, Lo HW, Shaikh A, Camarillo IG, Lelièvre SA, Seewaldt V, Vidi PA. Oncogene 38 3855-3870 (2019)
  6. Molecular mechanism for the regulation of yeast separase by securin. Luo S, Tong L. Nature 542 255-259 (2017)
  7. Tissue tension and not interphase cell shape determines cell division orientation in the Drosophila follicular epithelium. Finegan TM, Na D, Cammarota C, Skeeters AV, Nádasi TJ, Dawney NS, Fletcher AG, Oakes PW, Bergstralh DT. EMBO J 38 e100072 (2019)
  8. Afadin orients cell division to position the tubule lumen in developing renal tubules. Gao L, Yang Z, Hiremath C, Zimmerman SE, Long B, Brakeman PR, Mostov KE, Bryant DM, Luby-Phelps K, Marciano DK. Development 144 3511-3520 (2017)
  9. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development. Byrd KM, Lough KJ, Patel JH, Descovich CP, Curtis TA, Williams SE. Development 143 2803-2817 (2016)
  10. Telophase correction refines division orientation in stratified epithelia. Lough KJ, Byrd KM, Descovich CP, Spitzer DC, Bergman AJ, Beaudoin GM, Reichardt LF, Williams SE. Elife 8 e49249 (2019)
  11. Hexameric NuMA:LGN structures promote multivalent interactions required for planar epithelial divisions. Pirovano L, Culurgioni S, Carminati M, Alfieri A, Monzani S, Cecatiello V, Gaddoni C, Rizzelli F, Foadi J, Pasqualato S, Mapelli M. Nat Commun 10 2208 (2019)
  12. Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes. Zhou PJ, Wang X, An N, Wei L, Zhang L, Huang X, Zhu HH, Fang YX, Gao WQ. Oncogene 38 2192-2205 (2019)
  13. Activated ezrin controls MISP levels to ensure correct NuMA polarization and spindle orientation. Kschonsak YT, Hoffmann I. J Cell Sci 131 jcs214544 (2018)
  14. Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia. Rakotomamonjy J, Brunner M, Jüschke C, Zang K, Huang EJ, Reichardt LF, Chenn A. Neural Dev 12 7 (2017)
  15. Multivalent interactions make adherens junction-cytoskeletal linkage robust during morphogenesis. Perez-Vale KZ, Yow KD, Johnson RI, Byrnes AE, Finegan TM, Slep KC, Peifer M. J Cell Biol 220 e202104087 (2021)
  16. mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division. Bonucci M, Kuperwasser N, Barbe S, Koka V, de Villeneuve D, Zhang C, Srivastava N, Jia X, Stokes MP, Bienaimé F, Verkarre V, Lopez JB, Jaulin F, Pontoglio M, Terzi F, Delaval B, Piel M, Pende M. Nat Commun 11 3200 (2020)
  17. Loss of the canonical spindle orientation function in the Pins/LGN homolog AGS3. Saadaoui M, Konno D, Loulier K, Goiame R, Jadhav V, Mapelli M, Matsuzaki F, Morin X. EMBO Rep 18 1509-1520 (2017)
  18. Eph signaling controls mitotic spindle orientation and cell proliferation in neuroepithelial cells. Franco M, Carmena A. J Cell Biol 218 1200-1217 (2019)
  19. Interaction between Discs large and Pins/LGN/GPSM2: a comparison across species. Schiller EA, Bergstralh DT. Biol Open 10 bio058982 (2021)
  20. Promotion of row 1-specific tip complex condensates by Gpsm2-Gαi provides insights into row identity of the tallest stereocilia. Shi Y, Lin L, Wang C, Zhu J. Sci Adv 8 eabn4556 (2022)
  21. Structural and functional insight into the effect of AFF4 dimerization on activation of HIV-1 proviral transcription. Tang D, Chen C, Liao G, Liu J, Liao B, Huang Q, Chen Q, Zhao J, Jiang H, Duan J, Huang J, Wang K, Wang J, Zhou C, Chu W, Li W, Sun B, Li Z, Dai L, Fu X, Cheng W, Xue Y, Qi S. Cell Discov 6 7 (2020)
  22. Cdk1 phosphorylation negatively regulates the activity of Net1 towards RhoA during mitosis. Ulu A, Oh W, Zuo Y, Frost JA. Cell Signal 80 109926 (2021)
  23. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. Camuglia J, Chanet S, Martin AC. Elife 11 e78779 (2022)
  24. The Drosophila mitotic spindle orientation machinery requires activation, not just localization. Neville KE, Finegan TM, Lowe N, Bellomio PM, Na D, Bergstralh DT. EMBO Rep 24 e56074 (2023)
  25. Cortical dynein drives centrosome clustering in cells with centrosome amplification. Mercadante DL, Aaron WA, Olson SD, Manning AL. Mol Biol Cell 34 ar63 (2023)
  26. Exploring the evolution and function of Canoe's intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. Gurley NJ, Szymanski RA, Dowen RH, Butcher TA, Ishiyama N, Peifer M. PLoS One 18 e0289224 (2023)
  27. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Mercadante DL, Manning AL, Olson SD. Biophys J 120 3192-3210 (2021)
  28. AGS3 antagonizes LGN to balance oriented cell divisions and cell fate choices in mammalian epidermis. Descovich CP, Lough KJ, Jena A, Wu JJ, Yom J, Spitzer DC, Uppalapati M, Kedziora KM, Williams SE. Elife 12 e80403 (2023)
  29. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Nat Commun 14 151 (2023)
  30. Interplay between the plasma membrane and cell-cell adhesion maintains epithelial identity for correct polarised cell divisions. Hosawi MM, Cheng J, Fankhaenel M, Przewloka MR, Elias S. J Cell Sci 137 jcs261701 (2024)
  31. Molecular mechanism of Afadin substrate recruitment to the receptor phosphatase PTPRK via its pseudophosphatase domain. Hay IM, Mulholland KE, Lai T, Graham SC, Sharpe HJ, Deane JE. Elife 11 e79855 (2022)