5a1a Citations

2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

Science 348 1147-51 (2015)
Cited: 242 times
EuropePMC logo PMID: 25953817

Abstract

Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM.

Reviews - 5a1a mentioned but not cited (3)

  1. Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. Nicholls RA, Tykac M, Kovalevskiy O, Murshudov GN. Acta Crystallogr D Struct Biol 74 492-505 (2018)
  2. Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps. DiMaio F, Chiu W. Methods Enzymol 579 255-276 (2016)
  3. Single-particle reconstruction statistics: a diagnostic tool in solving biomolecular structures by cryo-EM. Heymann JB. Acta Crystallogr F Struct Biol Commun 75 33-44 (2019)

Articles - 5a1a mentioned but not cited (30)

  1. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Kimanius D, Forsberg BO, Scheres SH, Lindahl E. Elife 5 (2016)
  2. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S. Science 348 1147-1151 (2015)
  3. Measurement of atom resolvability in cryo-EM maps with Q-scores. Pintilie G, Zhang K, Su Z, Li S, Schmid MF, Chiu W. Nat Methods 17 328-334 (2020)
  4. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. Elife 7 (2018)
  5. Atomic Resolution Cryo-EM Structure of β-Galactosidase. Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA, Zhu X, Grigorieff N, Milne JLS, Sapiro G, Wu X, Subramaniam S. Structure 26 848-856.e3 (2018)
  6. Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. Singharoy A, Teo I, McGreevy R, Stone JE, Zhao J, Schulten K. Elife 5 (2016)
  7. A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality. Herzik MA, Fraser JS, Lander GC. Structure 27 344-358.e3 (2019)
  8. GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps. Robertson MJ, van Zundert GCP, Borrelli K, Skiniotis G. Structure 28 707-716.e3 (2020)
  9. Improvement of cryo-EM maps by density modification. Terwilliger TC, Ludtke SJ, Read RJ, Adams PD, Afonine PV. Nat Methods 17 923-927 (2020)
  10. Current approaches for automated model building into cryo-EM maps using Buccaneer with CCP-EM. Hoh SW, Burnley T, Cowtan K. Acta Crystallogr D Struct Biol 76 531-541 (2020)
  11. Model-based local density sharpening of cryo-EM maps. Jakobi AJ, Wilmanns M, Sachse C. Elife 6 (2017)
  12. Subtype specific differences in NS5A domain II reveals involvement of proline at position 310 in cyclosporine susceptibility of hepatitis C virus. Ansari IU, Striker R. Viruses 4 3303-3315 (2012)
  13. High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective. Wlodawer A, Li M, Dauter Z. Structure 25 1589-1597.e1 (2017)
  14. Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for improved structure and ligand quality. van Zundert GCP, Moriarty NW, Sobolev OV, Adams PD, Borrelli KW. Structure 29 913-921.e4 (2021)
  15. New tools in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink "waters," and NGL Viewer to recapture online 3D graphics. Prisant MG, Williams CJ, Chen VB, Richardson JS, Richardson DC. Protein Sci 29 315-329 (2020)
  16. On the appearance of carboxylates in electrostatic potential maps. Wang J. Protein Sci. 26 396-402 (2017)
  17. Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Verbeke EJ, Zhou Y, Horton AP, Mallam AL, Taylor DW, Marcotte EM. J Struct Biol 209 107416 (2020)
  18. EMBuilder: A Template Matching-based Automatic Model-building Program for High-resolution Cryo-Electron Microscopy Maps. Zhou N, Wang H, Wang J. Sci Rep 7 2664 (2017)
  19. Variability of Protein Structure Models from Electron Microscopy. Monroe L, Terashi G, Kihara D. Structure 25 592-602.e2 (2017)
  20. De novo main-chain modeling with MAINMAST in 2015/2016 EM Model Challenge. Terashi G, Kihara D. J Struct Biol 204 351-359 (2018)
  21. Fusion of DARPin to Aldolase Enables Visualization of Small Protein by Cryo-EM. Yao Q, Weaver SJ, Mock JY, Jensen GJ. Structure 27 1148-1155.e3 (2019)
  22. A convenient protein library for spectroscopic calibrations. De Meutter J, Goormaghtigh E. Comput Struct Biotechnol J 18 1864-1876 (2020)
  23. Transglycosylation abilities of β-d-galactosidases from GH family 2. Benešová E, Šućur Z, Těšínský M, Spiwok V, Lipovová P. 3 Biotech 11 168 (2021)
  24. Map segmentation, automated model-building and their application to the Cryo-EM Model Challenge. Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. J. Struct. Biol. 204 338-343 (2018)
  25. New software tools in EMAN2 inspired by EMDatabank map challenge. Bell JM, Chen M, Durmaz T, Fluty AC, Ludtke SJ. J. Struct. Biol. 204 283-290 (2018)
  26. 1.8 Å resolution structure of β-galactosidase with a 200 kV CRYO ARM electron microscope. Merk A, Fukumura T, Zhu X, Darling JE, Grisshammer R, Ognjenovic J, Subramaniam S. IUCrJ 7 639-643 (2020)
  27. Likelihood-based docking of models into cryo-EM maps. Millán C, McCoy AJ, Terwilliger TC, Read RJ. Acta Crystallogr D Struct Biol 79 281-289 (2023)
  28. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps. Wang J. Protein Sci. 26 1098-1104 (2017)
  29. Precision requirements and data compression in CryoEM/CryoET. Fluty AC, Ludtke SJ. J Struct Biol 214 107875 (2022)
  30. Validation, analysis and annotation of cryo-EM structures. Pintilie G, Chiu W. Acta Crystallogr D Struct Biol 77 1142-1152 (2021)


Reviews citing this publication (71)

  1. A Call for Systematic Research on Solute Carriers. César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM, Superti-Furga G. Cell 162 478-487 (2015)
  2. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  3. Biophysics in drug discovery: impact, challenges and opportunities. Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Nat Rev Drug Discov 15 679-698 (2016)
  4. Pathways to Specialized Ribosomes: The Brussels Lecture. Dinman JD. J. Mol. Biol. 428 2186-2194 (2016)
  5. In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. Asano S, Engel BD, Baumeister W. J. Mol. Biol. 428 332-343 (2016)
  6. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Kelch BA. Biopolymers 105 532-546 (2016)
  7. The Current Revolution in Cryo-EM. Egelman EH. Biophys. J. 110 1008-1012 (2016)
  8. Cellular structural biology as revealed by cryo-electron tomography. Irobalieva RN, Martins B, Medalia O. J. Cell. Sci. 129 469-476 (2016)
  9. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K. Annu Rev Biophys 45 253-278 (2016)
  10. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens. Glaeser RM, Han BG, Csencsits R, Killilea A, Pulk A, Cate JH. Biophys. J. 110 749-755 (2016)
  11. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens. Liljeroos L, Malito E, Ferlenghi I, Bottomley MJ. J Immunol Res 2015 156241 (2015)
  12. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Vinothkumar KR. Curr. Opin. Struct. Biol. 33 103-114 (2015)
  13. Animal NLRs provide structural insights into plant NLR function. Bentham A, Burdett H, Anderson PA, Williams SJ, Kobe B. Ann. Bot. 119 827-702 (2017)
  14. MicroED opens a new era for biological structure determination. Nannenga BL, Gonen T. Curr. Opin. Struct. Biol. 40 128-135 (2016)
  15. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  16. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Stark H, Chari A. Microscopy (Oxf) 65 23-34 (2016)
  17. Direct Visualization of Actin Filaments and Actin-Binding Proteins in Neuronal Cells. Jung M, Kim D, Mun JY. Front Cell Dev Biol 8 588556 (2020)
  18. Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts. Capitani G, Duarte JM, Baskaran K, Bliven S, Somody JC. Bioinformatics 32 481-489 (2016)
  19. Validating maps from single particle electron cryomicroscopy. Rosenthal PB, Rubinstein JL. Curr. Opin. Struct. Biol. 34 135-144 (2015)
  20. Atomic resolution structure determination by the cryo-EM method MicroED. Liu S, Hattne J, Reyes FE, Sanchez-Martinez S, Jason de la Cruz M, Shi D, Gonen T. Protein Sci. 26 8-15 (2017)
  21. Automated data collection in single particle electron microscopy. Tan YZ, Cheng A, Potter CS, Carragher B. Microscopy (Oxf) 65 43-56 (2016)
  22. Generalized single-particle cryo-EM--a historical perspective. Frank J. Microscopy (Oxf) 65 3-8 (2016)
  23. Single-particle cryo-EM data acquisition by using direct electron detection camera. Wu S, Armache JP, Cheng Y. Microscopy (Oxf) 65 35-41 (2016)
  24. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. Mazhab-Jafari MT, Rubinstein JL. Sci Adv 2 e1600725 (2016)
  25. Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Jonić S. Comput Struct Biotechnol J 14 385-390 (2016)
  26. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Merino F, Raunser S. Angew. Chem. Int. Ed. Engl. 56 2846-2860 (2017)
  27. Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Patel TR, Chojnowski G, Astha, Koul A, McKenna SA, Bujnicki JM. Methods 118-119 146-162 (2017)
  28. Structure of IP3R channel: high-resolution insights from cryo-EM. Baker MR, Fan G, Serysheva II. Curr. Opin. Struct. Biol. 46 38-47 (2017)
  29. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci. 26 69-81 (2017)
  30. Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Jonić S. Curr. Opin. Struct. Biol. 43 114-121 (2017)
  31. Advances in high-resolution cryo-EM of oligomeric enzymes. Vonck J, Mills DJ. Curr. Opin. Struct. Biol. 46 48-54 (2017)
  32. Biomolecular Assemblies: Moving from Observation to Predictive Design. Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Chem. Rev. 118 11519-11574 (2018)
  33. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. Stewart PL. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9 (2017)
  34. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Micron 96 57-64 (2017)
  35. DNA-based construction at the nanoscale: emerging trends and applications. Xavier PL, Chandrasekaran AR. Nanotechnology 29 062001 (2018)
  36. From Electron Crystallography to Single Particle CryoEM (Nobel Lecture). Henderson R. Angew. Chem. Int. Ed. Engl. 57 10804-10825 (2018)
  37. From structural biology to designing therapy for inborn errors of metabolism. Yue WW. J. Inherit. Metab. Dis. 39 489-498 (2016)
  38. Lipid environment of membrane proteins in cryo-EM based structural analysis. Mio K, Sato C. Biophys Rev 10 307-316 (2018)
  39. Macromolecular crystallography using microcrystal electron diffraction. Clabbers MTB, Xu H. Acta Crystallogr D Struct Biol 77 313-324 (2021)
  40. Where is crystallography going? Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Acta Crystallogr D Struct Biol 74 152-166 (2018)
  41. CryoEM-based hybrid modeling approaches for structure determination. Cassidy CK, Himes BA, Luthey-Schulten Z, Zhang P. Curr. Opin. Microbiol. 43 14-23 (2018)
  42. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  43. Imaging Bacterial Cell Wall Biosynthesis. Radkov AD, Hsu YP, Booher G, VanNieuwenhze MS. Annu. Rev. Biochem. 87 991-1014 (2018)
  44. Structural biology data archiving - where we are and what lies ahead. Kleywegt GJ, Velankar S, Patwardhan A. FEBS Lett. 592 2153-2167 (2018)
  45. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Microsc. Microanal. 24 406-419 (2018)
  46. Bulk and local structures of metal-organic frameworks unravelled by high-resolution electron microscopy. Liu L, Zhang D, Zhu Y, Han Y. Commun Chem 3 99 (2020)
  47. Challenges and opportunities in cryo-EM single-particle analysis. Lyumkis D. J. Biol. Chem. 294 5181-5197 (2019)
  48. Cryo-EM as a powerful tool for drug discovery. Van Drie JH, Tong L. Bioorg Med Chem Lett 30 127524 (2020)
  49. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Scapin G, Potter CS, Carragher B. Cell Chem Biol 25 1318-1325 (2018)
  50. Development of the field of structural physiology. Fujiyoshi Y. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 91 447-468 (2015)
  51. Dissecting Virus Infectious Cycles by Cryo-Electron Microscopy. Lee KK, Gui L. PLoS Pathog. 12 e1005625 (2016)
  52. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Front Microbiol 9 3255 (2018)
  53. Electron cryomicroscopy as a powerful tool in biomedical research. Quentin D, Raunser S. J. Mol. Med. 96 483-493 (2018)
  54. Focusing super resolution on the cytoskeleton. Shelden EA, Colburn ZT, Jones JC. F1000Res 5 (2016)
  55. Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomics". Arnold SA, Müller SA, Schmidli C, Syntychaki A, Rima L, Chami M, Stahlberg H, Goldie KN, Braun T. Proteomics 18 e1700176 (2018)
  56. Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control. Jonić S, Sorzano CO. Biomed Res Int 2016 7060348 (2016)
  57. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Mitra AK. Acta Crystallogr F Struct Biol Commun 75 3-11 (2019)
  58. Analysis and comparison of electron radiation damage assessments in Cryo-EM by single particle analysis and micro-crystal electron diffraction. Shi D, Huang R. Front Mol Biosci 9 988928 (2022)
  59. Approaches to the Structure-Based Design of Antivirulence Drugs: Therapeutics for the Post-Antibiotic Era. Neville N, Jia Z. Molecules 24 (2019)
  60. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). Pal S, Ganesan K, Eswaran S. IUBMB Life 70 947-960 (2018)
  61. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Xue H, Zhang M, Liu J, Wang J, Ren G. Front Chem 10 889203 (2022)
  62. CryoEM maps are full of potential. Marques MA, Purdy MD, Yeager M. Curr. Opin. Struct. Biol. 58 214-223 (2019)
  63. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Int J Mol Sci 23 10669 (2022)
  64. High-resolution structure determination using high-throughput electron cryo-tomography. Liu HF, Zhou Y, Bartesaghi A. Acta Crystallogr D Struct Biol 78 817-824 (2022)
  65. Imaging of soft materials using in situ liquid-cell transmission electron microscopy. He K, Shokuhfar T, Shahbazian-Yassar R. J Phys Condens Matter 31 103001 (2019)
  66. Microbiology catches the cryo-EM bug. Earl LA, Falconieri V, Subramaniam S. Curr. Opin. Microbiol. 43 199-207 (2018)
  67. Progress and Opportunities in the Characterization of Cellulose - An Important Regulator of Cell Wall Growth and Mechanics. Rongpipi S, Ye D, Gomez ED, Gomez EW. Front Plant Sci 9 1894 (2018)
  68. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Conrard L, Tyteca D. Biomolecules 9 (2019)
  69. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Methods Mol Biol 2715 431-470 (2024)
  70. The PGC-1/ERR network and its role in precision oncology. De Vitto H, Bode AM, Dong Z. NPJ Precis Oncol 3 9 (2019)
  71. The cryo-EM method microcrystal electron diffraction (MicroED). Nannenga BL, Gonen T. Nat. Methods 16 369-379 (2019)

Articles citing this publication (138)

  1. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S. Cell 165 1698-1707 (2016)
  2. Historical Article The revolution will not be crystallized: a new method sweeps through structural biology. Callaway E. Nature 525 172-174 (2015)
  3. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL, Yan Y, Green N, Mroczkowski B, Neitz RJ, Wipf P, Falconieri V, Deshaies RJ, Milne JL, Huryn D, Arkin M, Subramaniam S. Science 351 871-875 (2016)
  4. The development of cryo-EM into a mainstream structural biology technique. Nogales E. Nat. Methods 13 24-27 (2016)
  5. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. Grant T, Grigorieff N. J. Struct. Biol. 192 204-208 (2015)
  6. Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating. Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, Subramaniam S. Cell 164 747-756 (2016)
  7. EMDataBank unified data resource for 3DEM. Lawson CL, Patwardhan A, Baker ML, Hryc C, Garcia ES, Hudson BP, Lagerstedt I, Ludtke SJ, Pintilie G, Sala R, Westbrook JD, Berman HM, Kleywegt GJ, Chiu W. Nucleic Acids Res. 44 D396-403 (2016)
  8. cisTEM, user-friendly software for single-particle image processing. Grant T, Rohou A, Grigorieff N. Elife 7 (2018)
  9. Cryo-EM single particle analysis with the Volta phase plate. Danev R, Baumeister W. Elife 5 (2016)
  10. Volta phase plate cryo-EM of the small protein complex Prx3. Khoshouei M, Radjainia M, Phillips AJ, Gerrard JA, Mitra AK, Plitzko JM, Baumeister W, Danev R. Nat Commun 7 10534 (2016)
  11. 2.9 Å Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus Particles. Liu Z, Guo F, Wang F, Li TC, Jiang W. Structure 24 319-328 (2016)
  12. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. Methods 100 3-15 (2016)
  13. Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Huet A, Makhov AM, Huffman JB, Vos M, Homa FL, Conway JF. Nat. Struct. Mol. Biol. 23 531-539 (2016)
  14. Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma. Liu Y, Hill MG, Klose T, Chen Z, Watters K, Bochkov YA, Jiang W, Palmenberg AC, Rossmann MG. Proc. Natl. Acad. Sci. U.S.A. 113 8997-9002 (2016)
  15. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM. J. Struct. Biol. 197 73-82 (2017)
  16. A new protocol to accurately determine microtubule lattice seam location. Zhang R, Nogales E. J. Struct. Biol. 192 245-254 (2015)
  17. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Zhu Y, Ciston J, Zheng B, Miao X, Czarnik C, Pan Y, Sougrat R, Lai Z, Hsiung CE, Yao K, Pinnau I, Pan M, Han Y. Nat Mater 16 532-536 (2017)
  18. Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. McGreevy R, Teo I, Singharoy A, Schulten K. Methods 100 50-60 (2016)
  19. An algorithm for estimation and correction of anisotropic magnification distortion of cryo-EM images without need of pre-calibration. Yu G, Li K, Liu Y, Chen Z, Wang Z, Yan R, Klose T, Tang L, Jiang W. J. Struct. Biol. 195 207-215 (2016)
  20. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. Ehsan M, Du Y, Scull NJ, Tikhonova E, Tarrasch J, Mortensen JS, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. J. Am. Chem. Soc. 138 3789-3796 (2016)
  21. Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE. J. Mol. Biol. 428 777-789 (2016)
  22. A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q. Structure 25 663-670.e3 (2017)
  23. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation. Hussain H, Du Y, Scull NJ, Mortensen JS, Tarrasch J, Bae HE, Loland CJ, Byrne B, Kobilka BK, Chae PS. Chemistry 22 7068-7073 (2016)
  24. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Abellán Flos M, García Moreno MI, Ortiz Mellet C, García Fernández JM, Nierengarten JF, Vincent SP. Chemistry 22 11450-11460 (2016)
  25. Antibody-Based Affinity Cryoelectron Microscopy at 2.6-Å Resolution. Yu G, Li K, Huang P, Jiang X, Jiang W. Structure 24 1984-1990 (2016)
  26. Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. Oyama T, Ishino S, Shirai T, Yamagami T, Nagata M, Ogino H, Kusunoki M, Ishino Y. Nucleic Acids Res. 44 9505-9517 (2016)
  27. On the interpretation of electron microscopic maps of biological macromolecules. Wang J, Moore PB. Protein Sci. 26 122-129 (2017)
  28. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG. Elife 7 (2018)
  29. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. Benjamin CJ, Wright KJ, Hyun SH, Krynski K, Yu G, Bajaj R, Guo F, Stauffacher CV, Jiang W, Thompson DH. Langmuir 32 551-559 (2016)
  30. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Zhu D, Wang X, Fang Q, Van Etten JL, Rossmann MG, Rao Z, Zhang X. Nat Commun 9 1552 (2018)
  31. The influence of frame alignment with dose compensation on the quality of single particle reconstructions. Spear JM, Noble AJ, Xie Q, Sousa DR, Chapman MS, Stagg SM. J. Struct. Biol. 192 196-203 (2015)
  32. Near-Atomic Resolution Structure Determination of a Cypovirus Capsid and Polymerase Complex Using Cryo-EM at 200kV. Li X, Zhou N, Chen W, Zhu B, Wang X, Xu B, Wang J, Liu H, Cheng L. J. Mol. Biol. 429 79-87 (2017)
  33. Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities. Bendory T, Bartesaghi A, Singer A. IEEE Signal Process Mag 37 58-76 (2020)
  34. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. Vonck J, Parcej DN, Mills DJ. PLoS ONE 11 e0159476 (2016)
  35. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. Das M, Du Y, Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. J. Am. Chem. Soc. 139 3072-3081 (2017)
  36. EMPIAR: the Electron Microscopy Public Image Archive. Iudin A, Korir PK, Somasundharam S, Weyand S, Cattavitello C, Fonseca N, Salih O, Kleywegt GJ, Patwardhan A. Nucleic Acids Res 51 D1503-D1511 (2023)
  37. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus. Organtini LJ, Lee H, Iketani S, Huang K, Ashley RE, Makhov AM, Conway JF, Parrish CR, Hafenstein S. J. Virol. 90 9733-9742 (2016)
  38. Research Support, Non-U.S. Gov't Drugging the undruggable: targeting challenging E3 ligases for personalized medicine. Galdeano C. Future Med Chem 9 347-350 (2017)
  39. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0. Chiu PL, Li X, Li Z, Beckett B, Brilot AF, Grigorieff N, Agard DA, Cheng Y, Walz T. J. Struct. Biol. 192 163-173 (2015)
  40. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. Solomon HV, Tabachnikov O, Lansky S, Salama R, Feinberg H, Shoham Y, Shoham G. Acta Crystallogr. D Biol. Crystallogr. 71 2433-2448 (2015)
  41. The 2.8 Å Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide. Xie Q, Spear JM, Noble AJ, Sousa DR, Meyer NL, Davulcu O, Zhang F, Linhardt RJ, Stagg SM, Chapman MS. Mol Ther Methods Clin Dev 5 1-12 (2017)
  42. The structure of DNA by direct imaging. Marini M, Falqui A, Moretti M, Limongi T, Allione M, Genovese A, Lopatin S, Tirinato L, Das G, Torre B, Giugni A, Gentile F, Candeloro P, Di Fabrizio E. Sci Adv 1 e1500734 (2015)
  43. Adeno-Associated Virus (AAV-DJ)-Cryo-EM Structure at 1.56 Å Resolution. Xie Q, Yoshioka CK, Chapman MS. Viruses 12 E1194 (2020)
  44. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P. J Phys Chem B 121 3853-3863 (2017)
  45. Experimental charge density from electron microscopic maps. Wang J. Protein Sci. 26 1619-1626 (2017)
  46. Paramagnetic Ligand Tagging To Identify Protein Binding Sites. Brath U, Swamy SI, Veiga AX, Tung CC, Van Petegem F, Erdélyi M. J. Am. Chem. Soc. 137 11391-11398 (2015)
  47. Residue proximity information and protein model discrimination using saturation-suppressor mutagenesis. Sahoo A, Khare S, Devanarayanan S, Jain PC, Varadarajan R. Elife 4 (2015)
  48. Symmetry-mismatch reconstruction of genomes and associated proteins within icosahedral viruses using cryo-EM. Li X, Liu H, Cheng L. Biophys Rep 2 25-32 (2016)
  49. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. Grange M, Vasishtan D, Grünewald K. J. Struct. Biol. 197 181-190 (2017)
  50. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Ravelli RBG, Nijpels FJT, Henderikx RJM, Weissenberger G, Thewessem S, Gijsbers A, Beulen BWAMM, López-Iglesias C, Peters PJ. Nat Commun 11 2563 (2020)
  51. DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM. Al-Azzawi A, Ouadou A, Max H, Duan Y, Tanner JJ, Cheng J. BMC Bioinformatics 21 509 (2020)
  52. Distributions of experimental protein structures on coarse-grained free energy landscapes. Sankar K, Liu J, Wang Y, Jernigan RL. J Chem Phys 143 243153 (2015)
  53. Particle segmentation algorithm for flexible single particle reconstruction. Zhou Q, Zhou N, Wang HW. Biophys Rep 3 43-55 (2017)
  54. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide. Benjamin CJ, Wright KJ, Bolton SC, Hyun SH, Krynski K, Grover M, Yu G, Guo F, Kinzer-Ursem TL, Jiang W, Thompson DH. Sci Rep 6 32500 (2016)
  55. Simultaneous Determination of Protein Structure and Dynamics Using Cryo-Electron Microscopy. Bonomi M, Pellarin R, Vendruscolo M. Biophys. J. 114 1604-1613 (2018)
  56. Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits. Passos DO, Lyumkis D. J. Struct. Biol. 192 235-244 (2015)
  57. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Xie J, Li K, Gao Y, Huang R, Lai Y, Shi Y, Yang S, Zhu G, Zhang Q, He J. Vet. Res. 47 16 (2016)
  58. Structural basis of Notch recognition by human γ-secretase. Yang G, Zhou R, Zhou Q, Guo X, Yan C, Ke M, Lei J, Shi Y. Nature 565 192-197 (2019)
  59. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. Nat. Methods 15 905-908 (2018)
  60. A particle-filter framework for robust cryo-EM 3D reconstruction. Hu M, Yu H, Gu K, Wang Z, Ruan H, Wang K, Ren S, Li B, Gan L, Xu S, Yang G, Shen Y, Li X. Nat. Methods 15 1083-1089 (2018)
  61. Advances in Structural Biology and the Application to Biological Filament Systems. Popp D, Koh F, Scipion CPM, Ghoshdastider U, Narita A, Holmes KC, Robinson RC. Bioessays 40 e1700213 (2018)
  62. CRYO-EM GOES HIGH-RESOLUTION. Doerr A. Nat. Methods 12 598-599 (2015)
  63. Conformation-controlled binding kinetics of antibodies. Galanti M, Fanelli D, Piazza F. Sci Rep 6 18976 (2016)
  64. Estimating the effect of finite depth of field in single-particle cryo-EM. Downing KH, Glaeser RM. Ultramicroscopy 184 94-99 (2018)
  65. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Sci Rep 6 30909 (2016)
  66. Imaging and structural studies of DNA-protein complexes and membrane ion channels. Marini M, Limongi T, Falqui A, Genovese A, Allione M, Moretti M, Lopatin S, Tirinato L, Das G, Torre B, Giugni A, Cesca F, Benfenati F, Di Fabrizio E. Nanoscale 9 2768-2777 (2017)
  67. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities. Leelananda SP, Lindert S. J Chem Theory Comput 13 5131-5145 (2017)
  68. REMBI: Recommended Metadata for Biological Images-enabling reuse of microscopy data in biology. Sarkans U, Chiu W, Collinson L, Darrow MC, Ellenberg J, Grunwald D, Hériché JK, Iudin A, Martins GG, Meehan T, Narayan K, Patwardhan A, Russell MRG, Saibil HR, Strambio-De-Castillia C, Swedlow JR, Tischer C, Uhlmann V, Verkade P, Barlow M, Bayraktar O, Birney E, Catavitello C, Cawthorne C, Wagner-Conrad S, Duke E, Paul-Gilloteaux P, Gustin E, Harkiolaki M, Kankaanpää P, Lemberger T, McEntyre J, Moore J, Nicholls AW, Onami S, Parkinson H, Parsons M, Romanchikova M, Sofroniew N, Swoger J, Utz N, Voortman LM, Wong F, Zhang P, Kleywegt GJ, Brazma A. Nat Methods 18 1418-1422 (2021)
  69. Seeing is believing: Ras dimers observed in live cells. Philips MR, Der CJ. Proc. Natl. Acad. Sci. U.S.A. 112 9793-9794 (2015)
  70. Structures of the Carbon-Phosphorus Lyase Complex Reveal the Binding Mode of the NBD-like PhnK. Yang K, Ren Z, Raushel FM, Zhang J. Structure 24 37-42 (2016)
  71. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid. Hermannsdörfer J, Tinnemann V, Peckys DB, de Jonge N. Microsc. Microanal. 22 656-665 (2016)
  72. The Electron Microscopy eXchange (EMX) initiative. Marabini R, Ludtke SJ, Murray SC, Chiu W, de la Rosa-Trevín JM, Patwardhan A, Heymann JB, Carazo JM. J. Struct. Biol. 194 156-163 (2016)
  73. "Solvent hydrogen-bond occlusion": A new model of polar desolvation for biomolecular energetics. Bazzoli A, Karanicolas J. J Comput Chem 38 1321-1331 (2017)
  74. Benchmarking cryo-EM Single Particle Analysis Workflow. Kim LY, Rice WJ, Eng ET, Kopylov M, Cheng A, Raczkowski AM, Jordan KD, Bobe D, Potter CS, Carragher B. Front Mol Biosci 5 50 (2018)
  75. Development of a yeast internal-subunit eGFP labeling strategy and its application in subunit identification in eukaryotic group II chaperonin TRiC/CCT. Zang Y, Wang H, Cui Z, Jin M, Liu C, Han W, Wang Y, Cong Y. Sci Rep 8 2374 (2018)
  76. Effects of aligned α-helix peptide dipoles on experimental electrostatic potentials. Wang J, Videla PE, Batista VS. Protein Sci. 26 1692-1697 (2017)
  77. Giant Glycosidase Inhibitors: First- and Second-Generation Fullerodendrimers with a Dense Iminosugar Shell. Nierengarten JF, Schneider JP, Trinh TMN, Joosten A, Holler M, Lepage ML, Bodlenner A, García-Moreno MI, Ortiz Mellet C, Compain P. Chemistry 24 2483-2492 (2018)
  78. Hybrid Electron Microscopy Normal Mode Analysis with Scipion. Harastani M, Sorzano COS, Jonić S. Protein Sci 29 223-236 (2020)
  79. No longer 'blob-ology': Cryo-EM is getting into molecular details. Zhu H, Zhu P. Sci China Life Sci 58 1154-1156 (2015)
  80. Perspectives on paramagnetic NMR from a life sciences infrastructure. Ravera E, Parigi G, Luchinat C. J. Magn. Reson. 282 154-169 (2017)
  81. Quantitative mining of compositional heterogeneity in cryo-EM datasets of ribosome assembly intermediates. Rabuck-Gibbons JN, Lyumkis D, Williamson JR. Structure 30 498-509.e4 (2022)
  82. Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages. Chen Q, Vieth M, Timm DE, Humblet C, Schneidman-Duhovny D, Chemmama IE, Sali A, Zeng W, Lu J, Liu L. PLoS ONE 12 e0175758 (2017)
  83. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. Wu M, Lander GC, Herzik MA. J Struct Biol X 4 100020 (2020)
  84. The Novel Property of Heptapeptide of Microcin C7 in Affecting the Cell Growth of Escherichia coli. Ran R, Zeng H, Zhao D, Liu R, Xu X. Molecules 22 (2017)
  85. The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex. Enriquez AS, Rojo HM, Bhatt JM, Molugu SK, Hildenbrand ZL, Bernal RA. Cell Cycle 16 1309-1319 (2017)
  86. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Nat Methods 20 123-130 (2023)
  87. Assessment of detailed conformations suggests strategies for improving cryoEM models: Helix at lower resolution, ensembles, pre-refinement fixups, and validation at multi-residue length scale. Richardson JS, Williams CJ, Videau LL, Chen VB, Richardson DC. J. Struct. Biol. 204 301-312 (2018)
  88. Atomic structure of the translation regulatory protein NS1 of bluetongue virus. Kerviel A, Ge P, Lai M, Jih J, Boyce M, Zhang X, Zhou ZH, Roy P. Nat Microbiol 4 837-845 (2019)
  89. Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. Mittelberger A, Kramberger C, Hofer C, Mangler C, Meyer JC. Microsc. Microanal. 23 809-817 (2017)
  90. Below 3 Å structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Kayama Y, Burton-Smith RN, Song C, Terahara N, Kato T, Murata K. Sci Rep 11 8395 (2021)
  91. Benefits and Limitations of Low-kV Macromolecular Imaging of Frozen-Hydrated Biological Samples. Majorovits E, Angert I, Kaiser U, Schröder RR. Biophys. J. 110 776-784 (2016)
  92. Deep-Learning-Assisted Volume Visualization. Cheng HC, Cardone A, Jain S, Krokos E, Narayan K, Subramaniam S, Varshney A. IEEE Trans Vis Comput Graph 25 1378-1391 (2019)
  93. Electrospray ion beam deposition plus low-energy electron holography as a tool for imaging individual biomolecules. Ochner H, Rauschenbach S, Malavolti L. Essays Biochem 67 151-163 (2023)
  94. Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM. Rawson S, Bisson C, Hurdiss DL, Fazal A, McPhillie MJ, Sedelnikova SE, Baker PJ, Rice DW, Muench SP. Proc. Natl. Acad. Sci. U.S.A. 115 1795-1800 (2018)
  95. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. Hrmova M, Zimmer J, Bulone V, Fincher GB. Plant Physiol 194 33-50 (2023)
  96. Fast and automatic identification of particle tilt pairs based on Delaunay triangulation. Vilas JL, Navas J, Gómez-Blanco J, de la Rosa-Trevín JM, Melero R, Peschiera I, Ferlenghi I, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS. J. Struct. Biol. 196 525-533 (2016)
  97. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Herzik MA, Wu M, Lander GC. Nat Commun 10 1032 (2019)
  98. Let the structural symphony begin. Ornes S. Nature 536 361-363 (2016)
  99. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Zhou L, Song J, Kim JS, Pei X, Huang C, Boyce M, Mendonça L, Clare D, Siebert A, Allen CS, Liberti E, Stuart D, Pan X, Nellist PD, Zhang P, Kirkland AI, Wang P. Nat Commun 11 2773 (2020)
  100. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG. PLoS ONE 12 e0181869 (2017)
  101. Modeling Beta-Traces for Beta-Barrels from Cryo-EM Density Maps. Si D, He J. Biomed Res Int 2017 1793213 (2017)
  102. Simulation-Based Methods for Model Building and Refinement in Cryoelectron Microscopy. Dodd T, Yan C, Ivanov I. J Chem Inf Model 60 2470-2483 (2020)
  103. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm. Xu Y, Wu J, Yin CC, Mao Y. PLoS ONE 11 e0167765 (2016)
  104. A Graph Partitioning Approach to Simultaneous Angular Reconstitution. Pragier G, Greenberg I, Cheng X, Shkolnisky Y. IEEE Trans Comput Imaging 2 323-334 (2016)
  105. A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM. Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J. Genes (Basel) 10 (2019)
  106. A large expert-curated cryo-EM image dataset for machine learning protein particle picking. Dhakal A, Gyawali R, Wang L, Cheng J. Sci Data 10 392 (2023)
  107. A shared vision for macromolecular crystallography over the next five years. Förster A, Schulze-Briese C. Struct Dyn 6 064302 (2019)
  108. APPLE picker: Automatic particle picking, a low-effort cryo-EM framework. Heimowitz A, Andén J, Singer A. J. Struct. Biol. 204 215-227 (2018)
  109. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Pham M, Yuan Y, Rana A, Osher S, Miao J. Sci Rep 13 5624 (2023)
  110. Analysis of β-strand Twist from the 3-dimensional Image of a Protein. Islam T, Poteat M, He J. ACM BCB 2017 650-654 (2017)
  111. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images. Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J. BMC Bioinformatics 20 326 (2019)
  112. Best practice: setting up and operating a mid-sized cryo-EM facility. Meng X, Ratnayake I, Escobar Galvis ML, Kotecki J, Ramjan Z, Zhao G. Front Mol Biosci 10 1302680 (2023)
  113. Introductory Journal Article Biophysical Journal Special Issue: Focus on Cryo-EM. Egelman EH, Engel A. Biophys. J. 110 E01 (2016)
  114. Bispectrum Inversion with Application to Multireference Alignment. Bendory T, Boumal N, Ma C, Zhao Z, Singer A. IEEE Trans Signal Process 66 1037-1050 (2018)
  115. Characterization of Glycoproteins with the Immunoglobulin Fold by X-Ray Crystallography and Biophysical Techniques. Ereño-Orbea J, Sicard T, Cui H, Akula I, Julien JP. J Vis Exp (2018)
  116. Chemistry. Tracking the merry dance of nanoparticles. Colliex C. Science 349 232-233 (2015)
  117. Cryo-electron microscopy structure of a human PRMT5:MEP50 complex. Timm DE, Bowman V, Madsen R, Rauch C. PLoS ONE 13 e0193205 (2018)
  118. DRPnet: automated particle picking in cryo-electron micrographs using deep regression. Nguyen NP, Ersoy I, Gotberg J, Bunyak F, White TA. BMC Bioinformatics 22 55 (2021)
  119. Determination of chemical identity and occupancy from experimental density maps. Wang J. Protein Sci. 27 411-420 (2018)
  120. Editorial Editorial: Methods in structural biology: Cryo-EM. Sokolova OS. Front Mol Biosci 9 1041373 (2022)
  121. Enzymatic hydrolysis-induced degradation of a lactose-coupled supramolecular hydrogel. Akama S, Maki T, Yamanaka M. Chem. Commun. (Camb.) 54 8814-8817 (2018)
  122. Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion. Maluenda D, Majtner T, Horvath P, Vilas JL, Jiménez-Moreno A, Mota J, Ramírez-Aportela E, Sánchez-García R, Conesa P, Del Caño L, Rancel Y, Fonseca Y, Martínez M, Sharov G, García CA, Strelak D, Melero R, Marabini R, Carazo JM, Sorzano COS. Acta Crystallogr D Struct Biol 75 882-894 (2019)
  123. Identification of Mg2+ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Wang J, Natchiar SK, Moore PB, Klaholz BP. Acta Crystallogr D Struct Biol 77 534-539 (2021)
  124. Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames. Wu C, Shi H, Zhu D, Fan K, Zhang X. QRB Discov 2 e11 (2021)
  125. Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Ochner H, Szilagyi S, Abb S, Gault J, Robinson CV, Malavolti L, Rauschenbach S, Kern K. Proc Natl Acad Sci U S A 118 e2112651118 (2021)
  126. Measuring local-directional resolution and local anisotropy in cryo-EM maps. Vilas JL, Tagare HD, Vargas J, Carazo JM, Sorzano COS. Nat Commun 11 55 (2020)
  127. Introductory Journal Article Methods in integrated structural biology. Owens R. Methods 95 1-2 (2016)
  128. Molecular Dynamics as a Tool for Virtual Ligand Screening. Menchon G, Maveyraud L, Czaplicki G. Methods Mol Biol 2714 33-83 (2024)
  129. Photoactivatable senolysis with single-cell resolution delays aging. Shi D, Liu W, Gao Y, Li X, Huang Y, Li X, James TD, Guo Y, Li J. Nat Aging 3 297-312 (2023)
  130. Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 Nobel Laureates in Chemistry. Nogales E. Proc. Natl. Acad. Sci. U.S.A. 115 441-444 (2018)
  131. Real-time cryo-electron microscopy data preprocessing with Warp. Tegunov D, Cramer P. Nat. Methods 16 1146-1152 (2019)
  132. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. Burton-Smith RN, Watanabe A, Tokutsu R, Song C, Murata K, Minagawa J. J. Biol. Chem. 294 15003-15013 (2019)
  133. research-article The potential impact of recent developments in three-dimensional quantitative interaction proteomics on structural biology. Tuncbag N, Gursoy A, Keskin O, Nussinov R. Expert Rev Proteomics 13 447-449 (2016)
  134. The redesign of oxazolidinone antibiotics in response to Staphylococcus aureus. Lupton D, Belousoff MJ. Future Microbiol 12 1113-1117 (2017)
  135. Wavelet invariants for statistically robust multi-reference alignment. Hirn M, Little A. Inf inference 10 1287-1351 (2021)
  136. Widening the reach of structural biology. Baker EN. IUCrJ 3 84-85 (2016)
  137. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud. Cianfrocco MA, Lahiri I, DiMaio F, Leschziner AE. J. Struct. Biol. 203 230-235 (2018)
  138. iMEM: Isolation of Plasma Membrane for Cryoelectron Microscopy. Peitsch CF, Beckmann S, Zuber B. Structure 24 2198-2206 (2016)