4zad Citations

New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.

Abstract

The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.

Reviews - 4zad mentioned but not cited (1)

Articles - 4zad mentioned but not cited (1)

  1. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Payne KA, White MD, Fisher K, Khara B, Bailey SS, Parker D, Rattray NJ, Trivedi DK, Goodacre R, Beveridge R, Barran P, Rigby SE, Scrutton NS, Hay S, Leys D. Nature 522 497-501 (2015)


Reviews citing this publication (17)

  1. Flavins as Covalent Catalysts: New Mechanisms Emerge. Piano V, Palfey BA, Mattevi A. Trends Biochem. Sci. 42 457-469 (2017)
  2. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Stefely JA, Pagliarini DJ. Trends Biochem. Sci. 42 824-843 (2017)
  3. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Widhalm JR, Rhodes D. Hortic Res 3 16046 (2016)
  4. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. Leys D, Scrutton NS. Curr. Opin. Struct. Biol. 41 19-26 (2016)
  5. Physiology, ecology and industrial applications of aroma formation in yeast. Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. FEMS Microbiol. Rev. 41 S95-S128 (2017)
  6. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. Liu M, Lu S. Front Plant Sci 7 1898 (2016)
  7. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Lin CI, McCarty RM, Liu HW. Angew. Chem. Int. Ed. Engl. 56 3446-3489 (2017)
  8. Bacterial terpenome. Rudolf JD, Alsup TA, Xu B, Li Z. Nat Prod Rep 38 905-980 (2021)
  9. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Breugst M, Reissig HU. Angew Chem Int Ed Engl 59 12293-12307 (2020)
  10. Synthetic Enzyme-Catalyzed CO2 Fixation Reactions. Aleku GA, Roberts GW, Titchiner GR, Leys D. ChemSusChem 14 1781-1804 (2021)
  11. The expanding world of biosynthetic pericyclases: cooperation of experiment and theory for discovery. Jamieson CS, Ohashi M, Liu F, Tang Y, Houk KN. Nat Prod Rep 36 698-713 (2019)
  12. Arylmalonate decarboxylase-a highly selective bacterial biocatalyst with unknown function. Miyamoto K, Kourist R. Appl. Microbiol. Biotechnol. 100 8621-8631 (2016)
  13. Derivatives of Natural Organocatalytic Cofactors and Artificial Organocatalytic Cofactors as Catalysts in Enzymes. Lechner H, Oberdorfer G. Chembiochem 23 e202100599 (2022)
  14. Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds. Tolmie C, Smit MS, Opperman DJ. Nat Prod Rep 36 326-353 (2019)
  15. Biocatalytic C-C Bond Formation for One Carbon Resource Utilization. Yang Q, Guo X, Liu Y, Jiang H. Int J Mol Sci 22 1890 (2021)
  16. Enzymatic Conversion of CO2: From Natural to Artificial Utilization. Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Chem Rev 123 5702-5754 (2023)
  17. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Payer SE, Faber K, Glueck SM. Adv. Synth. Catal. 361 2402-2420 (2019)

Articles citing this publication (63)

  1. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT. Metab Eng Commun 3 111-119 (2016)
  2. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae. Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. Biotechnol J 12 (2017)
  3. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding. Beveridge R, Migas LG, Payne KAP, Scrutton NS, Leys D, Barran PE. Nat Commun 7 12163 (2016)
  4. An unusual strategy for the anoxic biodegradation of phthalate. Ebenau-Jehle C, Mergelsberg M, Fischer S, Brüls T, Jehmlich N, von Bergen M, Boll M. ISME J 11 224-236 (2017)
  5. Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis. Marshall SA, Fisher K, Ní Cheallaigh A, White MD, Payne KA, Parker DA, Rigby SE, Leys D. J. Biol. Chem. 292 4623-4637 (2017)
  6. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30. Newmister SA, Gober CM, Romminger S, Yu F, Tripathi A, Parra LL, Williams RM, Berlinck RG, Joullié MM, Sherman DH. J. Am. Chem. Soc. 138 11176-11184 (2016)
  7. Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study. Tian G, Liu Y. Phys Chem Chem Phys 19 7733-7742 (2017)
  8. Natural 1,3-Dipolar Cycloadditions. Baunach M, Hertweck C. Angew. Chem. Int. Ed. Engl. 54 12550-12552 (2015)
  9. A Sequential Cycloaddition Strategy for the Synthesis of Alsmaphorazine B Traces a Path Through a Family of Alstonia Alkaloids. Hong AY, Vanderwal CD. Tetrahedron 73 4160-4171 (2017)
  10. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals. Zhou Y, Wu S, Li Z. Angew. Chem. Int. Ed. Engl. 55 11647-11650 (2016)
  11. Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Mori Y, Noda S, Shirai T, Kondo A. Nat Commun 12 2195 (2021)
  12. The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerization, and catalysis. Bailey SS, Payne KAP, Fisher K, Marshall SA, Cliff MJ, Spiess R, Parker DA, Rigby SEJ, Leys D. J. Biol. Chem. 293 2272-2287 (2018)
  13. Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18. Jiang HX, Wang J, Zhou L, Jin ZJ, Cao XQ, Liu H, Chen HF, He YW. J Ind Microbiol Biotechnol 46 1025-1038 (2019)
  14. Phthaloyl-coenzyme A decarboxylase from Thauera chlorobenzoica: the prenylated flavin-, K+ - and Fe2+ -dependent key enzyme of anaerobic phthalate degradation. Mergelsberg M, Willistein M, Meyer H, Stärk HJ, Bechtel DF, Pierik AJ, Boll M. Environ. Microbiol. 19 3734-3744 (2017)
  15. Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence. Payne KAP, Marshall SA, Fisher K, Rigby SEJ, Cliff MJ, Spiess R, Cannas DM, Larrosa I, Hay S, Leys D. ACS Catal 11 2865-2878 (2021)
  16. Biochemistry: Unexpected role for vitamin B2. Clarke CF, Allan CM. Nature 522 427-428 (2015)
  17. Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase. Payer SE, Marshall SA, Bärland N, Sheng X, Reiter T, Dordic A, Steinkellner G, Wuensch C, Kaltwasser S, Fisher K, Rigby SEJ, Macheroux P, Vonck J, Gruber K, Faber K, Himo F, Leys D, Pavkov-Keller T, Glueck SM. Angew. Chem. Int. Ed. Engl. 56 13893-13897 (2017)
  18. SYNBIOCHEM-a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Carbonell P, Currin A, Dunstan M, Fellows D, Jervis A, Rattray NJ, Robinson CJ, Swainston N, Vinaixa M, Williams A, Yan C, Barran P, Breitling R, Chen GG, Faulon JL, Goble C, Goodacre R, Kell DB, Feuvre RL, Micklefield J, Scrutton NS, Shapira P, Takano E, Turner NJ. Biochem. Soc. Trans. 44 675-677 (2016)
  19. Sterically Shielded, Stabilized Nitrile Imine for Rapid Bioorthogonal Protein Labeling in Live Cells. An P, Lewandowski TM, Erbay TG, Liu P, Lin Q. J. Am. Chem. Soc. 140 4860-4868 (2018)
  20. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Del Rio Flores A, Twigg FF, Du Y, Cai W, Aguirre DQ, Sato M, Dror MJ, Narayanamoorthy M, Geng J, Zill NA, Zhai R, Zhang W. Nat Chem Biol 17 1305-1313 (2021)
  21. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete - Isaria farinosa. Linke D, Riemer SJL, Schimanski S, Nieter A, Krings U, Berger RG. Fungal Biol 121 763-774 (2017)
  22. Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). Payne KAP, Marshall SA, Fisher K, Cliff MJ, Cannas DM, Yan C, Heyes DJ, Parker DA, Larrosa I, Leys D. ACS Catal 9 2854-2865 (2019)
  23. Integrated Multi-omics Investigations Reveal the Key Role of Synergistic Microbial Networks in Removing Plasticizer Di-(2-Ethylhexyl) Phthalate from Estuarine Sediments. Wei ST, Chen YL, Wu YW, Wu TY, Lai YL, Wang PH, Ismail W, Lee TH, Chiang YR. mSystems 6 e0035821 (2021)
  24. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Weber HE, Gottardi M, Brückner C, Oreb M, Boles E, Tripp J. Appl. Environ. Microbiol. 83 (2017)
  25. A Single Amino Acid Mutation Converts (R)-5-Diphosphomevalonate Decarboxylase into a Kinase. Motoyama K, Unno H, Hattori A, Takaoka T, Ishikita H, Kawaide H, Yoshimura T, Hemmi H. J. Biol. Chem. 292 2457-2469 (2017)
  26. An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria. Ebenau-Jehle C, Soon CISL, Fuchs J, Geiger R, Boll M. Appl Environ Microbiol 86 e00498-20 (2020)
  27. Biosynthesis of Coenzyme Q in the Phytopathogen Xanthomonas campestris via a Yeast-Like Pathway. Zhou L, Li M, Wang XY, Liu H, Sun S, Chen H, Poplawsky A, He YW. Mol. Plant Microbe Interact. 32 217-226 (2019)
  28. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Yang C, Liu Y, Liu WQ, Wu C, Li J. Front Bioeng Biotechnol 9 730663 (2021)
  29. Directed evolution of prenylated FMN-dependent Fdc supports efficient in vivo isobutene production. Saaret A, Villiers B, Stricher F, Anissimova M, Cadillon M, Spiess R, Hay S, Leys D. Nat Commun 12 5300 (2021)
  30. Evolution of a xenobiotic degradation pathway: formation and capture of the labile phthaloyl-CoA intermediate during anaerobic phthalate degradation. Mergelsberg M, Egle V, Boll M. Mol. Microbiol. 108 614-626 (2018)
  31. Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Nagy EZA, Nagy CL, Filip A, Nagy K, Gál E, Tőtős R, Poppe L, Paizs C, Bencze LC. Sci Rep 9 647 (2019)
  32. Fluorescent enzyme-coupled activity assay for phenylalanine ammonia-lyases. Moisă ME, Amariei DA, Nagy EZA, Szarvas N, Toșa MI, Paizs C, Bencze LC. Sci Rep 10 18418 (2020)
  33. Mechanistic studies of 1,3-dipolar cycloadditions of bicyclic thioisomünchnones with alkenes. A computational rationale focused on donor-acceptor interactions. García de la Concepción J, Ávalos M, Cintas P, Jiménez JL, Light ME. Org. Biomol. Chem. 16 3438-3452 (2018)
  34. Modified mevalonate pathway of the archaeon Aeropyrum pernix proceeds via trans-anhydromevalonate 5-phosphate. Hayakawa H, Motoyama K, Sobue F, Ito T, Kawaide H, Yoshimura T, Hemmi H. Proc. Natl. Acad. Sci. U.S.A. 115 10034-10039 (2018)
  35. UbiD domain dynamics underpins aromatic decarboxylation. Marshall SA, Payne KAP, Fisher K, Titchiner GR, Levy C, Hay S, Leys D. Nat Commun 12 5065 (2021)
  36. o-Phthalate derived from plastics' plasticizers and a bacterium's solution to its anaerobic degradation. Sawers RG. Mol. Microbiol. 108 595-600 (2018)
  37. Catalysis of a 1,3-dipolar reaction by distorted DNA incorporating a heterobimetallic platinum(ii) and copper(ii) complex. Rivilla I, de Cózar A, Schäfer T, Hernandez FJ, Bittner AM, Eleta-Lopez A, Aboudzadeh A, Santos JI, Miranda JI, Cossío FP. Chem Sci 8 7038-7046 (2017)
  38. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. Microb. Cell Fact. 17 5 (2018)
  39. Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Wu S, Zhou Y, Gerngross D, Jeschek M, Ward TR. Nat Commun 10 5060 (2019)
  40. Chromatography Scrutiny, Molecular Docking, Clarifying the Selectivities and the Mechanism of [3 + 2] Cycloloaddition Reaction between Linallol and Chlorobenzene-Nitrile-oxide. Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, Idrissi ME, Wong LS, Zeroual A. J Fluoresc (2023)
  41. Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in Aspergillus niger. Lubbers RJM, Dilokpimol A, Navarro J, Peng M, Wang M, Lipzen A, Ng V, Grigoriev IV, Visser J, Hildén KS, de Vries RP. Front Bioeng Biotechnol 7 249 (2019)
  42. Corynebacterium Cell Factory Design and Culture Process Optimization for Muconic Acid Biosynthesis. Lee HN, Shin WS, Seo SY, Choi SS, Song JS, Kim JY, Park JH, Lee D, Kim SY, Lee SJ, Chun GT, Kim ES. Sci Rep 8 18041 (2018)
  43. Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists. Zeug M, Markovic N, Iancu CV, Tripp J, Oreb M, Choe JY. Sci Rep 11 3056 (2021)
  44. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Liu Y, Gong R, Liu X, Zhang P, Zhang Q, Cai YS, Deng Z, Winkler M, Wu J, Chen W. Microb. Cell Fact. 17 131 (2018)
  45. Enzymatic control of cycloadduct conformation ensures reversible 1,3-dipolar cycloaddition in a prFMN-dependent decarboxylase. Bailey SS, Payne KAP, Saaret A, Marshall SA, Gostimskaya I, Kosov I, Fisher K, Hay S, Leys D. Nat Chem 11 1049-1057 (2019)
  46. Enzymes make light work of hydrocarbon production. Scrutton NS. Science 357 872-873 (2017)
  47. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. Park HB, Perez CE, Barber KW, Rinehart J, Crawford JM. Elife 6 (2017)
  48. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain. Nicolaï T, Deparis Q, Foulquié-Moreno MR, Thevelein JM. Microb Cell Fact 20 114 (2021)
  49. Is there a role for synthetic biology in addressing the transition to a new low-carbon energy system? Shears J. Microb Biotechnol 12 824-827 (2019)
  50. Isophthalate:coenzyme A ligase initiates anaerobic degradation of xenobiotic isophthalate. Junghare M, Frey J, Naji KM, Spiteller D, Vaaje-Kolstad G, Schink B. BMC Microbiol 22 227 (2022)
  51. Kinetics and thermodynamics of enzymatic decarboxylation of α,β-unsaturated acid: a theoretical study. Promma P, Lao-Ngam C, Lai RY, Sagarik K. RSC Adv 12 14223-14234 (2022)
  52. Ligand-Driven Conformational Dynamics Influences Selectivity of UbiX. Żaczek S, Kowalska J, Dybala-Defratyka A. Chembiochem 19 2403-2409 (2018)
  53. Naphthalene Carboxylation in the Sulfate-Reducing Enrichment Culture N47 Is Proposed to Proceed via 1,3-Dipolar Cycloaddition to the Cofactor Prenylated Flavin Mononucleotide. Heker I, Haberhauer G, Meckenstock RU. Appl Environ Microbiol 89 e0192722 (2023)
  54. Natural products as inspiration for the development of new synthetic methods. Ma Z, Chen C. J Chin Chem Soc 65 43-59 (2018)
  55. Pd-Catalyzed Synthesis of Vinyl Arenes from Aryl Halides and Acrylic Acid. Gao Y, Ou Y, Gooßen LJ. Chemistry 25 8709-8712 (2019)
  56. Reconstruction of the "Archaeal" Mevalonate Pathway from the Methanogenic Archaeon Methanosarcina mazei in Escherichia coli Cells. Yoshida R, Yoshimura T, Hemmi H. Appl Environ Microbiol 86 (2020)
  57. SYNBIOCHEM Synthetic Biology Research Centre, Manchester - A UK foundry for fine and speciality chemicals production. Ra LF, P C, A C, M D, D F, Aj J, Njw R, Cj R, N S, M V, A W, C Y, P B, R B, Gg C, Jl F, C G, R G, Db K, J M, Ns S, P S, E T, Nj T. Synth Syst Biotechnol 1 271-275 (2016)
  58. Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases. Aleku GA, Prause C, Bradshaw-Allen RT, Plasch K, Glueck SM, Bailey SS, Payne KAP, Parker DA, Faber K, Leys D. ChemCatChem 10 3736-3745 (2018)
  59. The In Vitro Production of prFMN for Reconstitution of UbiD Enzymes. Marshall SA, Fisher K, Leys D. Methods Mol Biol 2280 219-227 (2021)
  60. The UbiX flavin prenyltransferase reaction mechanism resembles class I terpene cyclase chemistry. Marshall SA, Payne KAP, Fisher K, White MD, Ní Cheallaigh A, Balaikaite A, Rigby SEJ, Leys D. Nat Commun 10 2357 (2019)
  61. The microenvironment surrounding FAD mediates its conversion to 8-formyl-FAD in Aspergillus oryzae RIB40 formate oxidase. Doubayashi D, Oki M, Mikami B, Uchida H. J Biochem 166 67-75 (2019)
  62. Toolbox for the structure-guided evolution of ferulic acid decarboxylase (FDC). Duță H, Filip A, Nagy LC, Nagy EZA, Tőtős R, Bencze LC. Sci Rep 12 3347 (2022)
  63. Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger. Geoghegan IA, Stratford M, Bromley M, Archer DB, Avery SV. mSphere 5 (2020)