4xxb Citations

Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation.

Genes Dev 29 1524-34 (2015)
Cited: 47 times
EuropePMC logo PMID: 26220995

Abstract

The central region of MDM2 is critical for p53 activation and tumor suppression. Upon ribosomal stress, this region is bound by ribosomal proteins, particularly ribosomal protein L11 (RPL11), leading to MDM2 inactivation and subsequent p53 activation. Here, we solved the complex structure of human MDM2-RPL11 at 2.4 Å. MDM2 extensively interacts with RPL11 through an acidic domain and two zinc fingers. Formation of the MDM2-RPL11 complex induces substantial conformational changes in both proteins. RPL11, unable to bind MDM2 mutants, fails to induce the activation of p53 in cells. MDM2 mimics 28S rRNA binding to RPL11. The C4 zinc finger determines RPL11 binding to MDM2 but not its homolog, MDMX. Our results highlight the essential role of the RPL11-MDM2 interaction in p53 activation and tumor suppression and provide a structural basis for potential new anti-tumor drug development.

Articles - 4xxb mentioned but not cited (5)

  1. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, Chen Z, Zhang R, Gao Y, Tian W, Wu W, Tang J, Chen Z. Genes Dev 29 1524-1534 (2015)
  2. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Mol Med 28 109 (2022)
  3. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption. Banerjee A, Ray S. Scientifica (Cairo) 2016 9420692 (2016)
  4. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Bailly C, Vergoten G. Molecules 28 1828 (2023)
  5. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways. Castillo Duque de Estrada NM, Thoms M, Flemming D, Hammaren HM, Buschauer R, Ameismeier M, Baßler J, Beck M, Beckmann R, Hurt E. Nat Struct Mol Biol 30 1119-1131 (2023)


Reviews citing this publication (21)

  1. Ribosome biogenesis in cancer: new players and therapeutic avenues. Pelletier J, Thomas G, Volarević S. Nat Rev Cancer 18 51-63 (2018)
  2. Eukaryotic Ribosome Assembly. Baßler J, Hurt E. Annu Rev Biochem 88 281-306 (2019)
  3. Role of ribosomal protein mutations in tumor development (Review). Goudarzi KM, Lindström MS. Int J Oncol 48 1313-1324 (2016)
  4. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. Semin Cancer Biol 37-38 36-50 (2016)
  5. Zinc in Wound Healing Modulation. Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Nutrients 10 E16 (2017)
  6. RNA modifications and cancer. Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J. RNA Biol 17 1560-1575 (2020)
  7. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease. Pelava A, Schneider C, Watkins NJ. Biochem Soc Trans 44 1086-1090 (2016)
  8. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Liu Y, Deisenroth C, Zhang Y. Trends Cancer 2 191-204 (2016)
  9. Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Sane S, Rezvani K. Int J Mol Sci 18 E442 (2017)
  10. Anatomy of Mdm2 and Mdm4 in evolution. Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. J Mol Cell Biol 9 3-15 (2017)
  11. Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress. Lessard F, Brakier-Gingras L, Ferbeyre G. Bioessays 41 e1800183 (2019)
  12. Placeholder factors in ribosome biogenesis: please, pave my way. Espinar-Marchena FJ, Babiano R, Cruz J. Microb Cell 4 144-168 (2017)
  13. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways. Stępiński D. Histochem Cell Biol 146 119-139 (2016)
  14. MDM2 oligomers: antagonizers of the guardian of the genome. Leslie PL, Zhang Y. Oncogene 35 6157-6165 (2016)
  15. RBM10, a New Regulator of p53. Jung JH, Lee H, Zeng SX, Lu H. Cells 9 E2107 (2020)
  16. Nucleolar stress: From development to cancer. Lafita-Navarro MC, Conacci-Sorrell M. Semin Cell Dev Biol 136 64-74 (2023)
  17. Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity? Martín-Villanueva S, Gutiérrez G, Kressler D, de la Cruz J. Int J Mol Sci 22 4359 (2021)
  18. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. Karakostis K, Fåhraeus R. BMC Cancer 19 915 (2019)
  19. The Effect of Zinc on Post-neurosurgical Wound Healing: A Review. Adjepong D, Jahangir S, Malik BH. Cureus 12 e6770 (2020)
  20. [Ribosomes synthesis at the heart of cell proliferation]. Madru C, Leulliot N, Lebaron S. Med Sci (Paris) 33 613-619 (2017)
  21. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. George M, Masamba P, Iwalokun BA, Kappo AP. Am J Cancer Res 13 2773-2789 (2023)

Articles citing this publication (21)

  1. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Barrio-Garcia C, Thoms M, Flemming D, Kater L, Berninghausen O, Baßler J, Beckmann R, Hurt E. Nat Struct Mol Biol 23 37-44 (2016)
  2. GRWD1 negatively regulates p53 via the RPL11-MDM2 pathway and promotes tumorigenesis. Kayama K, Watanabe S, Takafuji T, Tsuji T, Hironaka K, Matsumoto M, Nakayama KI, Enari M, Kohno T, Shiraishi K, Kiyono T, Yoshida K, Sugimoto N, Fujita M. EMBO Rep 18 123-137 (2017)
  3. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Zhang Y, Ji A, Xu Z, Luo H, Song J. Plant Mol Biol 100 83-93 (2019)
  4. Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oršolić I, Bursać S, Jurada D, Drmić Hofman I, Dembić Z, Bartek J, Mihalek I, Volarević S. Oncogene 39 3443-3457 (2020)
  5. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Sci Rep 10 14453 (2020)
  6. Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage. Pelletier J, Riaño-Canalias F, Almacellas E, Mauvezin C, Samino S, Feu S, Menoyo S, Domostegui A, Garcia-Cajide M, Salazar R, Cortés C, Marcos R, Tauler A, Yanes O, Agell N, Kozma SC, Gentilella A, Thomas G. EMBO J 39 e103838 (2020)
  7. Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Micic J, Li Y, Wu S, Wilson D, Tutuncuoglu B, Gao N, Woolford JL. Nat Commun 11 3751 (2020)
  8. Nucleolar and coiled-body phosphoprotein 1 (NOLC1) regulates the nucleolar retention of TRF2. Yuan F, Li G, Tong T. Cell Death Discov 3 17043 (2017)
  9. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress. Xie N, Ma L, Zhu F, Zhao W, Tian F, Yuan F, Fu J, Huang D, Lv C, Tong T. Sci Rep 6 36171 (2016)
  10. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Zhang M, Zhang J, Yan W, Chen X. Oncotarget 7 78255-78268 (2016)
  11. BOP1 Knockdown Attenuates Neointimal Hyperplasia by Activating p53 and Inhibiting Nascent Protein Synthesis. Jia F, Wu Q, Wang Z, Zhang M, Yuan S, Che Y, Li B, Hu Z, Hu X. Oxid Med Cell Longev 2021 5986260 (2021)
  12. Loss of rps9 in Zebrafish Leads to p53-Dependent Anemia. Chen C, Huang H, Yan R, Lin S, Qin W. G3 (Bethesda) 9 4149-4157 (2019)
  13. Nicotine Promotes Human Papillomavirus (HPV)-Immortalized Cervical Epithelial Cells (H8) Proliferation by Activating RPS27a-Mdm2-P53 Pathway In Vitro. Chen L, Wang H. Toxicol Sci 167 408-418 (2019)
  14. Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein-protein interaction. Gureev M, Novikova D, Grigoreva T, Vorona S, Garabadzhiu A, Tribulovich V. J Comput Aided Mol Des 34 55-70 (2020)
  15. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency. Bokhari Y, Alhareeri A, Arodz T. BMC Bioinformatics 21 122 (2020)
  16. An improved method for the heterologous production of soluble human ribosomal proteins in Escherichia coli. Correddu D, Montaño López JJ, Vadakkedath PG, Lai A, Pernes JI, Watson PR, Leung IKH. Sci Rep 9 8884 (2019)
  17. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. George BP, Rajendran NK, Houreld NN, Abrahamse H. Molecules 27 6862 (2022)
  18. Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma. Han QL, Zhang XL, Ren PX, Mei LH, Lin WH, Wang L, Cao Y, Li K, Bai F. Acta Pharmacol Sin 44 877-887 (2023)
  19. Ipr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Liu F, Xue H, Ke J, Wu Y, Yao K, Liang S, Xu A, Zhang Y. Mol Cell Biol 40 e00471-19 (2020)
  20. RPL11 promotes non-small cell lung cancer cell proliferation by regulating endoplasmic reticulum stress and cell autophagy. Chen J, Lei C, Zhang H, Huang X, Yang Y, Liu J, Jia Y, Shi H, Zhang Y, Zhang J, Du J. BMC Mol Cell Biol 24 7 (2023)
  21. The induction of p53 correlates with defects in the production, but not the levels, of the small ribosomal subunit and stalled large ribosomal subunit biogenesis. Eastham MJ, Pelava A, Wells GR, Lee JK, Lawrence IR, Stewart J, Deichner M, Hertle R, Watkins NJ, Schneider C. Nucleic Acids Res 51 9397-9414 (2023)