4xtv Citations

Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors.

Abstract

Mycobacterium tuberculosis (Mtb), responsible for both latent and symptomatic tuberculosis (TB), remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with K(D)s ≤ 2 nM. Additionally, we obtained high-resolution cocrystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhancement in accumulation of a C-2'-α analogue over the corresponding C-2'-β analogue, consistent with their differential whole-cell activity.

Articles - 4xtv mentioned but not cited (1)

  1. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC. J Med Chem 58 7349-7369 (2015)


Reviews citing this publication (4)

  1. Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. Luna EC, Luna IS, Scotti L, Monteiro AFM, Scotti MT, de Moura RO, de Araújo RSA, Monteiro KLC, de Aquino TM, Ribeiro FF, Mendonça FJB. Oxid Med Cell Longev 2019 6587150 (2019)
  2. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)
  3. Mechanisms Governing Precise Protein Biotinylation. Sternicki LM, Wegener KL, Bruning JB, Booker GW, Polyak SW. Trends Biochem Sci 42 383-394 (2017)
  4. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Singh V, Dziwornu GA, Chibale K. Nat Rev Chem 7 340-354 (2023)

Articles citing this publication (13)

  1. In Vitro and In Vivo Effectiveness of Carvacrol, Thymol and Linalool against Leishmania infantum. Youssefi MR, Moghaddas E, Tabari MA, Moghadamnia AA, Moghadamnia AA, Hosseini SM, Farash BRH, Ebrahimi MA, Mousavi NN, Fata A, Maggi F, Petrelli R, Dall'Acqua S, Dall'Acqua S, Benelli G, Sut S. Molecules 24 E2072 (2019)
  2. Carboxylate Surrogates Enhance the Antimycobacterial Activity of UDP-Galactopyranose Mutase Probes. Winton VJ, Aldrich C, Kiessling LL. ACS Infect Dis 2 538-543 (2016)
  3. Targeting protein biotinylation enhances tuberculosis chemotherapy. Tiwari D, Park SW, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HP, Engelhart CA, Ioerger T, Sacchettini JC, Rhee K, Ehrt S, Aldrich CC, Dartois V, Schnappinger D. Sci Transl Med 10 eaal1803 (2018)
  4. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus). Kamte SLN, Ranjbarian F, Campagnaro GD, Nya PCB, Mbuntcha H, Woguem V, Womeni HM, Ta LA, Giordani C, Barboni L, Benelli G, Cappellacci L, Hofer A, Petrelli R, Maggi F. Int J Environ Res Public Health 14 E737 (2017)
  5. A single regulator NrtR controls bacterial NAD+ homeostasis via its acetylation. Gao R, Wei W, Hassan BH, Li J, Deng J, Feng Y. Elife 8 e51603 (2019)
  6. A Novel Lipoate-Protein Ligase, Mhp-LplJ, Is Required for Lipoic Acid Metabolism in Mycoplasma hyopneumoniae. Jin J, Chen H, Wang N, Zhu K, Liu H, Shi D, Xin J, Liu H. Front Microbiol 11 631433 (2020)
  7. Novel 5'-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Molecules 23 E3069 (2018)
  8. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Nat Microbiol 8 481-497 (2023)
  9. New Series of BPL Inhibitors To Probe the Ribose-Binding Pocket of Staphylococcus aureus Biotin Protein Ligase. Feng J, Paparella AS, Tieu W, Heim D, Clark S, Hayes A, Booker GW, Polyak SW, Abell AD. ACS Med Chem Lett 7 1068-1072 (2016)
  10. Synthesis and Anticancer and Antiviral Activities of C-2'-Branched Arabinonucleosides. Bege M, Kiss A, Bereczki I, Hodek J, Polyák L, Szemán-Nagy G, Naesens L, Weber J, Borbás A. Int J Mol Sci 23 12566 (2022)
  11. Advanced Resistance Studies Identify Two Discrete Mechanisms in Staphylococcus aureus to Overcome Antibacterial Compounds that Target Biotin Protein Ligase. Hayes AJ, Satiaputra J, Sternicki LM, Paparella AS, Feng Z, Lee KJ, Rodriguez BB, Tieu W, Eijkelkamp BA, Shearwin KE, Pukala TL, Abell AD, Booker GW, Polyak SW. Antibiotics (Basel) 9 E165 (2020)
  12. In Vitro Scolicidal Activity of the Sesquiterpenes Isofuranodiene, α-Bisabolol and Farnesol on Echinococcus granulosus Protoscoleces. Youssefi MR, Nikpay A, Hassanpour N, Mirzapour A, Tabari PS, Pavela R, Maggi F, Petrelli R. Molecules 25 E3593 (2020)
  13. Structural Study of Potent Triazole-Based Inhibitors of Staphylococcus aureus Biotin Protein Ligase. Stachura DL, Nguyen S, Polyak SW, Jovcevski B, Bruning JB, Abell AD. ACS Med Chem Lett 14 285-290 (2023)