4wpf Citations

Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action.

Abstract

A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.

Articles - 4wpf mentioned but not cited (9)

  1. Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Slominski AT, Kim TK, Hobrath JV, Janjetovic Z, Oak ASW, Postlethwaite A, Lin Z, Li W, Takeda Y, Jetten AM, Tuckey RC. Sci Rep 7 11434 (2017)
  2. A Residue-Resolved Bayesian Approach to Quantitative Interpretation of Hydrogen-Deuterium Exchange from Mass Spectrometry: Application to Characterizing Protein-Ligand Interactions. Saltzberg DJ, Broughton HB, Pellarin R, Chalmers MJ, Espada A, Dodge JA, Pascal BD, Griffin PR, Humblet C, Sali A. J Phys Chem B 121 3493-3501 (2017)
  3. Synthetic RORγt Agonists Enhance Protective Immunity. Chang MR, Dharmarajan V, Doebelin C, Garcia-Ordonez RD, Novick SJ, Kuruvilla DS, Kamenecka TM, Griffin PR. ACS Chem Biol 11 1012-1018 (2016)
  4. Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges. Wingert BM, Oerlemans R, Camacho CJ. J Comput Aided Mol Des 32 287-297 (2018)
  5. N-Arylsulfonyl Indolines as Retinoic Acid Receptor-Related Orphan Receptor γ (RORγ) Agonists. Doebelin C, Patouret R, Garcia-Ordonez RD, Chang MR, Dharmarajan V, Kuruvilla DS, Novick SJ, Lin L, Cameron MD, Griffin PR, Kamenecka TM. ChemMedChem 11 2607-2620 (2016)
  6. chemalot and chemalot_knime: Command line programs as workflow tools for drug discovery. Lee ML, Aliagas I, Feng JA, Gabriel T, O'Donnell TJ, Sellers BD, Wiswedel B, Gobbi A. J Cheminform 9 38 (2017)
  7. Structural change of retinoic-acid receptor-related orphan receptor induced by binding of inverse-agonist: Molecular dynamics and ab initio molecular orbital simulations. Suzuki S, Nakamura T, Saito R, Terauchi Y, Kawai K, Takimoto-Kamimura M, Kurita N. Comput Struct Biotechnol J 18 1676-1685 (2020)
  8. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Front Mol Biosci 9 904445 (2022)
  9. The application of machine learning methods to the prediction of novel ligands for RORγ/RORγT receptors. Bachorz RA, Pastwińska J, Nowak D, Karaś K, Karwaciak I, Ratajewski M. Comput Struct Biotechnol J 21 5491-5505 (2023)


Reviews citing this publication (3)

  1. RORγ antagonists and inverse agonists: a patent review. Bronner SM, Zbieg JR, Crawford JJ. Expert Opin Ther Pat 27 101-112 (2017)
  2. Recent progress on nuclear receptor RORγ modulators. Cyr P, Bronner SM, Crawford JJ. Bioorg Med Chem Lett 26 4387-4393 (2016)
  3. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Jetten AM, Cook DN. Annu Rev Pharmacol Toxicol 60 371-390 (2020)

Articles citing this publication (26)

  1. ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Wang J, Zou JX, Xue X, Cai D, Zhang Y, Duan Z, Xiang Q, Yang JC, Louie MC, Borowsky AD, Gao AC, Evans CP, Lam KS, Xu J, Kung HJ, Evans RM, Xu Y, Chen HW. Nat Med 22 488-496 (2016)
  2. Development of a Topical Treatment for Psoriasis Targeting RORγ: From Bench to Skin. Smith SH, Peredo CE, Takeda Y, Bui T, Neil J, Rickard D, Millerman E, Therrien JP, Nicodeme E, Brusq JM, Birault V, Viviani F, Hofland H, Jetten AM, Cote-Sierra J. PLoS One 11 e0147979 (2016)
  3. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors. Baviskar AT, Amrutkar SM, Trivedi N, Chaudhary V, Nayak A, Guchhait SK, Banerjee UC, Bharatam PV, Kundu CN. ACS Med Chem Lett 6 481-485 (2015)
  4. Structural States of RORγt: X-ray Elucidation of Molecular Mechanisms and Binding Interactions for Natural and Synthetic Compounds. Kallen J, Izaac A, Be C, Arista L, Orain D, Kaupmann K, Guntermann C, Hoegenauer K, Hintermann S. ChemMedChem 12 1014-1021 (2017)
  5. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors. Li X, Anderson M, Collin D, Muegge I, Wan J, Brennan D, Kugler S, Terenzio D, Kennedy C, Lin S, Labadia ME, Cook B, Hughes R, Farrow NA. J Biol Chem 292 11618-11630 (2017)
  6. Benzoxazepines Achieve Potent Suppression of IL-17 Release in Human T-Helper 17 (TH 17) Cells through an Induced-Fit Binding Mode to the Nuclear Receptor RORγ. Olsson RI, Xue Y, von Berg S, Aagaard A, McPheat J, Hansson EL, Bernström J, Hansson P, Jirholt J, Grindebacke H, Leffler A, Chen R, Xiong Y, Ge H, Hansson TG, Narjes F. ChemMedChem 11 207-216 (2016)
  7. Discovery of imidazo[1,5-a]pyridines and -pyrimidines as potent and selective RORc inverse agonists. Fauber BP, Gobbi A, Robarge K, Zhou A, Barnard A, Cao J, Deng Y, Eidenschenk C, Everett C, Ganguli A, Hawkins J, Johnson AR, La H, Norman M, Salmon G, Summerhill S, Ouyang W, Tang W, Wong H. Bioorg Med Chem Lett 25 2907-2912 (2015)
  8. SAR Exploration Guided by LE and Fsp(3): Discovery of a Selective and Orally Efficacious RORγ Inhibitor. Hirata K, Kotoku M, Seki N, Maeba T, Maeda K, Hirashima S, Sakai T, Obika S, Hori A, Hase Y, Yamaguchi T, Katsuda Y, Hata T, Miyagawa N, Arita K, Nomura Y, Asahina K, Aratsu Y, Kamada M, Adachi T, Noguchi M, Doi S, Crowe P, Bradley E, Steensma R, Tao H, Fenn M, Babine R, Li X, Thacher S, Hashimoto H, Shiozaki M. ACS Med Chem Lett 7 23-27 (2016)
  9. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists. Wang T, Banerjee D, Bohnert T, Chao J, Enyedy I, Fontenot J, Guertin K, Jones H, Lin EY, Marcotte D, Talreja T, Van Vloten K. Bioorg Med Chem Lett 25 2985-2990 (2015)
  10. Synthesis and Biological Evaluation of New Triazolo- and Imidazolopyridine RORγt Inverse Agonists. Hintermann S, Guntermann C, Mattes H, Carcache DA, Wagner J, Vulpetti A, Billich A, Dawson J, Kaupmann K, Kallen J, Stringer R, Orain D. ChemMedChem 11 2640-2648 (2016)
  11. Targeting castration-resistant prostate cancer with a novel RORγ antagonist elaiophylin. Zheng J, Wang J, Wang Q, Zou H, Wang H, Zhang Z, Chen J, Wang Q, Wang P, Zhao Y, Lu J, Zhang X, Xiang S, Wang H, Lei J, Chen HW, Liu P, Liu Y, Han F, Wang J. Acta Pharm Sin B 10 2313-2322 (2020)
  12. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand. Marcotte DJ, Liu Y, Little K, Jones JH, Powell NA, Wildes CP, Silvian LF, Chodaparambil JV. BMC Struct Biol 16 7 (2016)
  13. Discovery of Retinoic Acid-Related Orphan Receptor γt Inverse Agonists via Docking and Negative Image-Based Screening. Rauhamäki S, Postila PA, Lätti S, Niinivehmas S, Multamäki E, Liedl KR, Pentikäinen OT. ACS Omega 3 6259-6266 (2018)
  14. From RORγt Agonist to Two Types of RORγt Inverse Agonists. Wang Y, Cai W, Tang T, Liu Q, Yang T, Yang L, Ma Y, Zhang G, Huang Y, Song X, Orband-Miller LA, Wu Q, Zhou L, Xiang Z, Xiang JN, Leung S, Shao L, Lin X, Lobera M, Ren F. ACS Med Chem Lett 9 120-124 (2018)
  15. Assessing the Selectivity of FXR, LXRs, CAR, and RORγ Pharmaceutical Ligands With Reporter Cell Lines. Toporova L, Grimaldi M, Boulahtouf A, Balaguer P. Front Pharmacol 11 1122 (2020)
  16. Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation. Sun N, Yuan C, Ma X, Wang Y, Gu X, Fu W. Molecules 23 E3181 (2018)
  17. Atomistic simulations shed new light on the activation mechanisms of RORγ and classify it as Type III nuclear hormone receptor regarding ligand-binding paths. Saen-Oon S, Lozoya E, Segarra V, Guallar V, Soliva R. Sci Rep 9 17249 (2019)
  18. Identification and structure activity relationships of quinoline tertiary alcohol modulators of RORγt. Kummer DA, Cummings MD, Abad M, Barbay J, Castro G, Wolin R, Kreutter KD, Maharoof U, Milligan C, Nishimura R, Pierce J, Schalk-Hihi C, Spurlino J, Urbanski M, Venkatesan H, Wang A, Woods C, Xue X, Edwards JP, Fourie AM, Leonard K. Bioorg Med Chem Lett 27 2047-2057 (2017)
  19. GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds. Ahmed M, Hasani HJ, Kalyaanamoorthy S, Barakat K. Sci Rep 11 9510 (2021)
  20. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists. Fauber BP, Gobbi A, Savy P, Burton B, Deng Y, Everett C, La H, Johnson AR, Lockey P, Norman M, Wong H. Bioorg Med Chem Lett 25 4109-4113 (2015)
  21. Paradoxical Augmentation of Experimental Spondyloarthritis by RORC Inhibition in HLA-B27 Transgenic Rats. van Tok MN, Mandour M, Wahle J, Labadia ME, van de Sande MGH, Nabozny G, Baeten DL, van Duivenvoorde LM. Front Immunol 12 699987 (2021)
  22. Discovery of oxa-sultams as RORc inverse agonists showing reduced lipophilicity, improved selectivity and favorable ADME properties. René O, Fauber BP, Barnard A, Chapman K, Deng Y, Eidenschenk C, Everett C, Gobbi A, Johnson AR, La H, Norman M, Salmon G, Summerhill S, Wong H. Bioorg Med Chem Lett 26 4455-4461 (2016)
  23. Study on the Mechanism of Bu-Shen-He-Mai Granules in Improving Renal Damage of Ageing Spontaneously Hypertensive Rats by Regulating Th17 Cell/Tregs Balance. Zhang P, Song XY, Li W, Wei JL, Cui YJ, Qi YZ, Chen XB, Jiang YH, Yang CH. Evid Based Complement Alternat Med 2022 8315503 (2022)
  24. Crystallography-guided discovery of carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators: insights into different protein behaviors with "short" and "long" inverse agonists. Yu MC, Yang F, Ding XY, Sun NN, Jiang ZY, Huang YF, Yan YR, Zhu C, Xie Q, Chen ZF, Guo SQ, Jiang HL, Chen KX, Luo C, Luo XM, Chen SJ, Wang YH. Acta Pharmacol Sin 42 1524-1534 (2021)
  25. Ginseng-derived panaxadiol ameliorates STZ-induced type 1 diabetes through inhibiting RORγ/IL-17A axis. Tian SY, Chen SM, Feng YY, He JL, Li Y. Acta Pharmacol Sin 44 1217-1226 (2023)
  26. Targeting the cholesterol-RORα/γ axis inhibits colorectal cancer progression through degrading c-myc. Wang YN, Ruan DY, Wang ZX, Yu K, Rong DL, Liu ZX, Wang F, Hu JJ, Jin Y, Wu QN, Pu HY, Wang M, Xu RH, Zeng ZL. Oncogene 41 5266-5278 (2022)