4v6e Citations

Structures of the ribosome in intermediate states of ratcheting.

Science 325 1014-7 (2009)
Related entries: 4v6c, 4v6d

Cited: 164 times
EuropePMC logo PMID: 19696352

Abstract

Protein biosynthesis on the ribosome requires repeated cycles of ratcheting, which couples rotation of the two ribosomal subunits with respect to each other, and swiveling of the head domain of the small subunit. However, the molecular basis for how the two ribosomal subunits rearrange contacts with each other during ratcheting while remaining stably associated is not known. Here, we describe x-ray crystal structures of the intact Escherichia coli ribosome, either in the apo-form (3.5 angstrom resolution) or with one (4.0 angstrom resolution) or two (4.0 angstrom resolution) anticodon stem-loop tRNA mimics bound, that reveal intermediate states of intersubunit rotation. In the structures, the interface between the small and large ribosomal subunits rearranges in discrete steps along the ratcheting pathway. Positioning of the head domain of the small subunit is controlled by interactions with the large subunit and with the tRNA bound in the peptidyl-tRNA site. The intermediates observed here provide insight into how tRNAs move into the hybrid state of binding that precedes the final steps of mRNA and tRNA translocation.

Articles - 4v6e mentioned but not cited (1)

  1. Deciphering polymorphism in 61,157 Escherichia coli genomes via epistatic sequence landscapes. Vigué L, Croce G, Petitjean M, Ruppé E, Tenaillon O, Weigt M. Nat Commun 13 4030 (2022)


Reviews citing this publication (33)

  1. The noncoding RNA revolution-trashing old rules to forge new ones. Cech TR, Steitz JA. Cell 157 77-94 (2014)
  2. Functional complexity and regulation through RNA dynamics. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM. Nature 482 322-330 (2012)
  3. Structural basis of the translational elongation cycle. Voorhees RM, Ramakrishnan V. Annu. Rev. Biochem. 82 203-236 (2013)
  4. Structure and dynamics of a processive Brownian motor: the translating ribosome. Frank J, Gonzalez RL. Annu. Rev. Biochem. 79 381-412 (2010)
  5. Origin and evolution of the ribosome. Fox GE. Cold Spring Harb Perspect Biol 2 a003483 (2010)
  6. High-resolution structure of the eukaryotic 80S ribosome. Yusupova G, Yusupov M. Annu. Rev. Biochem. 83 467-486 (2014)
  7. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  8. Ribosome structure and dynamics during translocation and termination. Dunkle JA, Cate JH. Annu Rev Biophys 39 227-244 (2010)
  9. Biological mechanisms, one molecule at a time. Tinoco I, Gonzalez RL. Genes Dev. 25 1205-1231 (2011)
  10. Hierarchy of RNA functional dynamics. Mustoe AM, Brooks CL, Al-Hashimi HM. Annu. Rev. Biochem. 83 441-466 (2014)
  11. Single ribosome dynamics and the mechanism of translation. Aitken CE, Petrov A, Puglisi JD. Annu Rev Biophys 39 491-513 (2010)
  12. How should we think about the ribosome? Moore PB. Annu Rev Biophys 41 1-19 (2012)
  13. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CM, Nierhaus KH. Nat. Rev. Microbiol. 12 89-100 (2014)
  14. Ski2-like RNA helicase structures: common themes and complex assemblies. Johnson SJ, Jackson RN. RNA Biol 10 33-43 (2013)
  15. Intermediate states during mRNA-tRNA translocation. Frank J. Curr. Opin. Struct. Biol. 22 778-785 (2012)
  16. Intersubunit Bridges of the Bacterial Ribosome. Liu Q, Fredrick K. J. Mol. Biol. 428 2146-2164 (2016)
  17. Single-molecule analysis of translational dynamics. Petrov A, Chen J, O'Leary S, Tsai A, Puglisi JD. Cold Spring Harb Perspect Biol 4 a011551 (2012)
  18. Structural basis for protein synthesis: snapshots of the ribosome in motion. Noeske J, Cate JH. Curr. Opin. Struct. Biol. 22 743-749 (2012)
  19. Frameshifting dynamics. Tinoco I, Kim HK, Yan S. Biopolymers 99 1147-1166 (2013)
  20. Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code. Dunkle JA, Dunham CM. Biochimie 114 90-96 (2015)
  21. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Holtkamp W, Wintermeyer W, Rodnina MV. Bioessays 36 908-918 (2014)
  22. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 (2016)
  23. Structural Insights into tRNA Dynamics on the Ribosome. Agirrezabala X, Valle M. Int J Mol Sci 16 9866-9895 (2015)
  24. New Insights into Ribosome Structure and Function. Jobe A, Liu Z, Gutierrez-Vargas C, Frank J. Cold Spring Harb Perspect Biol 11 (2019)
  25. From DNA to proteins via the ribosome: structural insights into the workings of the translation machinery. Agirrezabala X, Frank J. Hum. Genomics 4 226-237 (2010)
  26. The mechanism of translation. Frank J. F1000Res 6 198 (2017)
  27. The translation elongation cycle-capturing multiple states by cryo-electron microscopy. Frank J. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  28. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function. Ero R, Kumar V, Chen Y, Gao YG. RNA Biol 13 1258-1273 (2016)
  29. Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control. Jonić S, Sorzano CO. Biomed Res Int 2016 7060348 (2016)
  30. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function. Ghosh A, Komar AA. Translation (Austin) 3 e999576 (2015)
  31. Functional Importance of Mobile Ribosomal Proteins. Chang KC, Wen JD, Yang LW. Biomed Res Int 2015 539238 (2015)
  32. Mechanisms of ribosome recycling in bacteria and mitochondria: a structural perspective. Seely SM, Gagnon MG. RNA Biol 19 662-677 (2022)
  33. Stress response as implemented by hibernating ribosomes: a structural overview. Matzov D, Bashan A, Yap MF, Yonath A. FEBS J. 286 3558-3565 (2019)

Articles citing this publication (130)

  1. The structure of the eukaryotic ribosome at 3.0 Å resolution. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. Science 334 1524-1529 (2011)
  2. Crystal structure of the eukaryotic ribosome. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. Science 330 1203-1209 (2010)
  3. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH. Science 332 981-984 (2011)
  4. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. Nature 466 329-333 (2010)
  5. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW, Starosta AL, Dönhöfer A, Connell SR, Fucini P, Mielke T, Whitford PC, Onuchic JN, Yu Y, Sanbonmatsu KY, Hartmann RK, Penczek PA, Wilson DN, Spahn CM. Nature 468 713-716 (2010)
  6. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Dunkle JA, Xiong L, Mankin AS, Cate JH. Proc. Natl. Acad. Sci. U.S.A. 107 17152-17157 (2010)
  7. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Jenner LB, Demeshkina N, Yusupova G, Yusupov M. Nat. Struct. Mol. Biol. 17 555-560 (2010)
  8. Ribosome. The structure of the human mitochondrial ribosome. Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V. Science 348 95-98 (2015)
  9. Elongation factor G bound to the ribosome in an intermediate state of translocation. Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. Science 340 1235490 (2013)
  10. Structure of the human 80S ribosome. Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Nature 520 640-645 (2015)
  11. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY. RNA 16 1196-1204 (2010)
  12. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Lareau LF, Hite DH, Hogan GJ, Brown PO. Elife 3 e01257 (2014)
  13. Control of ribosomal subunit rotation by elongation factor G. Pulk A, Cate JH. Science 340 1235970 (2013)
  14. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Chen C, Stevens B, Kaur J, Cabral D, Liu H, Wang Y, Zhang H, Rosenblum G, Smilansky Z, Goldman YE, Cooperman BS. Mol. Cell 42 367-377 (2011)
  15. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA. Nat. Struct. Mol. Biol. 17 289-293 (2010)
  16. Structural rearrangements of the ribosome at the tRNA proofreading step. Jenner L, Demeshkina N, Yusupova G, Yusupov M. Nat. Struct. Mol. Biol. 17 1072-1078 (2010)
  17. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Weir JR, Bonneau F, Hentschel J, Conti E. Proc. Natl. Acad. Sci. U.S.A. 107 12139-12144 (2010)
  18. The mechanisms of RNA SHAPE chemistry. McGinnis JL, Dunkle JA, Cate JH, Weeks KM. J. Am. Chem. Soc. 134 6617-6624 (2012)
  19. Coordinated conformational and compositional dynamics drive ribosome translocation. Chen J, Petrov A, Tsai A, O'Leary SE, Puglisi JD. Nat. Struct. Mol. Biol. 20 718-727 (2013)
  20. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P, Cate JH, Mankin AS. Antimicrob. Agents Chemother. 54 4961-4970 (2010)
  21. High-resolution structure of the Escherichia coli ribosome. Noeske J, Wasserman MR, Terry DS, Altman RB, Blanchard SC, Cate JH. Nat. Struct. Mol. Biol. 22 336-341 (2015)
  22. Energy barriers and driving forces in tRNA translocation through the ribosome. Bock LV, Blau C, Schröder GF, Davydov II, Fischer N, Stark H, Rodnina MV, Vaiana AC, Grubmüller H. Nat. Struct. Mol. Biol. 20 1390-1396 (2013)
  23. Allosteric control of the ribosome by small-molecule antibiotics. Wang L, Pulk A, Wasserman MR, Feldman MB, Altman RB, Cate JH, Blanchard SC. Nat. Struct. Mol. Biol. 19 957-963 (2012)
  24. Structure and dynamics of the mammalian ribosomal pretranslocation complex. Budkevich T, Giesebrecht J, Altman RB, Munro JB, Mielke T, Nierhaus KH, Blanchard SC, Spahn CM. Mol. Cell 44 214-224 (2011)
  25. Following the intersubunit conformation of the ribosome during translation in real time. Aitken CE, Puglisi JD. Nat. Struct. Mol. Biol. 17 793-800 (2010)
  26. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. Zhou J, Lancaster L, Trakhanov S, Noller HF. RNA 18 230-240 (2012)
  27. Recognition of the amber UAG stop codon by release factor RF1. Korostelev A, Zhu J, Asahara H, Noller HF. EMBO J. 29 2577-2585 (2010)
  28. Structural characterization of mRNA-tRNA translocation intermediates. Agirrezabala X, Liao HY, Schreiner E, Fu J, Ortiz-Meoz RF, Schulten K, Green R, Frank J. Proc. Natl. Acad. Sci. U.S.A. 109 6094-6099 (2012)
  29. Trajectories of the ribosome as a Brownian nanomachine. Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A. Proc. Natl. Acad. Sci. U.S.A. 111 17492-17497 (2014)
  30. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Jin H, Kelley AC, Ramakrishnan V. Proc. Natl. Acad. Sci. U.S.A. 108 15798-15803 (2011)
  31. Excited states of ribosome translocation revealed through integrative molecular modeling. Whitford PC, Ahmed A, Yu Y, Hennelly SP, Tama F, Spahn CM, Onuchic JN, Sanbonmatsu KY. Proc. Natl. Acad. Sci. U.S.A. 108 18943-18948 (2011)
  32. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Chen C, Stevens B, Kaur J, Smilansky Z, Cooperman BS, Goldman YE. Proc. Natl. Acad. Sci. U.S.A. 108 16980-16985 (2011)
  33. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. EMBO J. 33 1073-1085 (2014)
  34. Eukaryotic rpL10 drives ribosomal rotation. Sulima SO, Gülay SP, Anjos M, Patchett S, Meskauskas A, Johnson AW, Dinman JD. Nucleic Acids Res. 42 2049-2063 (2014)
  35. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. Halbach F, Rode M, Conti E. RNA 18 124-134 (2012)
  36. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Yan S, Wen JD, Bustamante C, Tinoco I. Cell 160 870-881 (2015)
  37. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome. Whitford PC, Blanchard SC, Cate JH, Sanbonmatsu KY. PLoS Comput. Biol. 9 e1003003 (2013)
  38. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy. Kato T, Yoshida H, Miyata T, Maki Y, Wada A, Namba K. Structure 18 719-724 (2010)
  39. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Nucleic Acids Res. 40 360-370 (2012)
  40. Error-prone and error-restrictive mutations affecting ribosomal protein S12. Agarwal D, Gregory ST, O'Connor M. J. Mol. Biol. 410 1-9 (2011)
  41. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV. Nat Commun 6 7442 (2015)
  42. The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. Caetano-Anollés G, Kim KM, Caetano-Anollés D. J. Mol. Evol. 74 1-34 (2012)
  43. Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Fu J, Munro JB, Blanchard SC, Frank J. Proc. Natl. Acad. Sci. U.S.A. 108 4817-4821 (2011)
  44. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Gagnon MG, Lin J, Bulkley D, Steitz TA. Science 345 684-687 (2014)
  45. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. Burkhardt DH, Rouskin S, Zhang Y, Li GW, Weissman JS, Gross CA. Elife 6 (2017)
  46. Structured mRNA induces the ribosome into a hyper-rotated state. Qin P, Yu D, Zuo X, Cornish PV. EMBO Rep. 15 185-190 (2014)
  47. Insights into the molecular determinants of EF-G catalyzed translocation. Wang L, Altman RB, Blanchard SC. RNA 17 2189-2200 (2011)
  48. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Réblová K, Sponer J, Lankas F. Nucleic Acids Res. 40 6290-6303 (2012)
  49. Ribosome RNA assembly intermediates visualized in living cells. McGinnis JL, Weeks KM. Biochemistry 53 3237-3247 (2014)
  50. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G. Li W, Liu Z, Koripella RK, Langlois R, Sanyal S, Frank J. Sci Adv 1 (2015)
  51. Contribution of intersubunit bridges to the energy barrier of ribosomal translocation. Liu Q, Fredrick K. Nucleic Acids Res. 41 565-574 (2013)
  52. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Noeske J, Huang J, Olivier NB, Giacobbe RA, Zambrowski M, Cate JH. Antimicrob. Agents Chemother. 58 5269-5279 (2014)
  53. Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. Pavlov MY, Zorzet A, Andersson DI, Ehrenberg M. EMBO J. 30 289-301 (2011)
  54. Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Jin Q, Sorzano CO, de la Rosa-Trevín JM, Bilbao-Castro JR, Núñez-Ramírez R, Llorca O, Tama F, Jonić S. Structure 22 496-506 (2014)
  55. A flexible loop in yeast ribosomal protein L11 coordinates P-site tRNA binding. Rhodin MH, Dinman JD. Nucleic Acids Res. 38 8377-8389 (2010)
  56. Choreography of molecular movements during ribosome progression along mRNA. Belardinelli R, Sharma H, Caliskan N, Cunha CE, Peske F, Wintermeyer W, Rodnina MV. Nat. Struct. Mol. Biol. 23 342-348 (2016)
  57. High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. Tian S, Cordero P, Kladwang W, Das R. RNA 20 1815-1826 (2014)
  58. The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. Bulkley D, Johnson F, Steitz TA. J. Mol. Biol. 416 571-578 (2012)
  59. EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Liu G, Song G, Zhang D, Zhang D, Li Z, Lyu Z, Dong J, Achenbach J, Gong W, Zhao XS, Nierhaus KH, Qin Y. Nat. Struct. Mol. Biol. 21 817-824 (2014)
  60. High throughput structural analysis of yeast ribosomes using hSHAPE. Leshin JA, Heselpoth R, Belew AT, Dinman J. RNA Biol 8 478-487 (2011)
  61. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y, Courvalin P. RNA 17 251-262 (2011)
  62. Probing conformational states of modified helix 69 in 50S ribosomes. Sakakibara Y, Chow CS. J. Am. Chem. Soc. 133 8396-8399 (2011)
  63. An extensive network of information flow through the B1b/c intersubunit bridge of the yeast ribosome. Rhodin MH, Dinman JD. PLoS ONE 6 e20048 (2011)
  64. T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest. Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS, El Bissati K, Muench SP, Rohrman B, Liu SR, Wollmann R, Ogata Y, Sarkeshik A, Yates JR, McLeod R. PLoS ONE 5 e14057 (2010)
  65. Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits. Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. Cell Rep 16 2187-2196 (2016)
  66. Interplay of the bacterial ribosomal A-site, S12 protein mutations and paromomycin binding: a molecular dynamics study. Panecka J, Mura C, Trylska J. PLoS ONE 9 e111811 (2014)
  67. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Thomsen ND, Lawson MR, Witkowsky LB, Qu S, Berger JM. Proc. Natl. Acad. Sci. U.S.A. 113 E7691-E7700 (2016)
  68. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Olivier NB, Altman RB, Noeske J, Basarab GS, Code E, Ferguson AD, Gao N, Huang J, Juette MF, Livchak S, Miller MD, Prince DB, Cate JH, Buurman ET, Blanchard SC. Proc. Natl. Acad. Sci. U.S.A. 111 16274-16279 (2014)
  69. Why base tautomerization does not cause errors in mRNA decoding on the ribosome. Satpati P, Åqvist J. Nucleic Acids Res. 42 12876-12884 (2014)
  70. Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases. Gutierrez B, Escudero JA, San Millan A, Hidalgo L, Carrilero L, Ovejero CM, Santos-Lopez A, Thomas-Lopez D, Gonzalez-Zorn B. Antimicrob. Agents Chemother. 56 2335-2341 (2012)
  71. Heterogeneity of single molecule FRET signals reveals multiple active ribosome subpopulations. Wang Y, Xiao M, Li Y. Proteins 82 1-9 (2014)
  72. Molecular biology. The eukaryotic ribosome. Ramakrishnan V. Science 331 681-682 (2011)
  73. Brownian dynamics study of the association between the 70S ribosome and elongation factor G. Długosz M, Huber GA, McCammon JA, Trylska J. Biopolymers 95 616-627 (2011)
  74. Fast fitting to low resolution density maps: elucidating large-scale motions of the ribosome. Flores SC. Nucleic Acids Res. 42 e9 (2014)
  75. Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures. Wu L, Chai D, Fraser ME, Zimmerly S. PLoS ONE 7 e49225 (2012)
  76. Primal eukaryogenesis: on the communal nature of precellular States, ancestral to modern life. Egel R. 2 170-212 (2012)
  77. Reliable semi-synthesis of hydrolysis-resistant 3'-peptidyl-tRNA conjugates containing genuine tRNA modifications. Graber D, Moroder H, Steger J, Trappl K, Polacek N, Micura R. Nucleic Acids Res. 38 6796-6802 (2010)
  78. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. Q Rev Biophys 49 e11 (2016)
  79. Efficient access to nonhydrolyzable initiator tRNA based on the synthesis of 3'-azido-3'-deoxyadenosine RNA. Steger J, Graber D, Moroder H, Geiermann AS, Aigner M, Micura R. Angew. Chem. Int. Ed. Engl. 49 7470-7472 (2010)
  80. Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Steger J, Micura R. Bioorg. Med. Chem. 19 5167-5174 (2011)
  81. Intrinsic molecular properties of the protein-protein bridge facilitate ratchet-like motion of the ribosome. Shasmal M, Chakraborty B, Sengupta J. Biochem. Biophys. Res. Commun. 399 192-197 (2010)
  82. Ligand- and pH-induced conformational changes of RNA domain helix 69 revealed by 2-aminopurine fluorescence. Sakakibara Y, Abeysirigunawardena SC, Duc AC, Dremann DN, Chow CS. Angew. Chem. Int. Ed. Engl. 51 12095-12098 (2012)
  83. Mg2+ dependence of 70 S ribosomal protein flexibility revealed by hydrogen/deuterium exchange and mass spectrometry. Yamamoto T, Shimizu Y, Ueda T, Shiro Y. J. Biol. Chem. 285 5646-5652 (2010)
  84. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Mohan S, Noller HF. Nat Commun 8 14285 (2017)
  85. Story in a sample-the potential (and limitations) of cryo-electron microscopy applied to molecular machines. Frank J. Biopolymers 99 832-836 (2013)
  86. Structural architecture of an RNA that competitively inhibits RNase L. Keel AY, Jha BK, Kieft JS. RNA 18 88-99 (2012)
  87. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors. Cocozaki AI, Altman RB, Huang J, Buurman ET, Kazmirski SL, Doig P, Prince DB, Blanchard SC, Cate JH, Ferguson AD. Proc. Natl. Acad. Sci. U.S.A. 113 8188-8193 (2016)
  88. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation. Ahmed T, Shi J, Bhushan S. Nucleic Acids Res. 45 8581-8595 (2017)
  89. Classification of RNA structure change by 'gazing' at experimental data. Woods CT, Laederach A. Bioinformatics 33 1647-1655 (2017)
  90. Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation. Bock LV, Blau C, Vaiana AC, Grubmüller H. Nucleic Acids Res. 43 6747-6760 (2015)
  91. Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Alejo JL, Blanchard SC. Proc. Natl. Acad. Sci. U.S.A. 114 E8603-E8610 (2017)
  92. Quantifying transient 3D dynamical phenomena of single mRNA particles in live yeast cell measurements. Calderon CP, Thompson MA, Casolari JM, Paffenroth RC, Moerner WE. J Phys Chem B 117 15701-15713 (2013)
  93. Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site. Panecka J, Šponer J, Trylska J. Biochimie 112 96-110 (2015)
  94. Interaction strengths between the ribosome and tRNA at various steps of translocation. Liu CY, Qureshi MT, Lee TH. Biophys. J. 100 2201-2208 (2011)
  95. Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression. Musalgaonkar S, Moomau CA, Dinman JD. Nucleic Acids Res. 42 13384-13392 (2014)
  96. Biochemistry. Leaps in translational elongation. Liljas A. Science 326 677-678 (2009)
  97. Centers of motion associated with EF-Tu binding to the ribosome. Paci M, Fox GE. RNA Biol 13 524-530 (2016)
  98. Selection against glycosylation sites in potential target proteins of the general HMWC N-glycosyltransferase in Haemophilus influenzae. Gawthorne JA, Tan NY, Bailey UM, Davis MR, Wong LW, Naidu R, Fox KL, Jennings MP, Schulz BL. Biochem. Biophys. Res. Commun. 445 633-638 (2014)
  99. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. Protein Sci. 25 1710-1721 (2016)
  100. Tracking fluctuation hotspots on the yeast ribosome through the elongation cycle. Gulay SP, Bista S, Varshney A, Kirmizialtin S, Sanbonmatsu KY, Dinman JD. Nucleic Acids Res. 45 4958-4971 (2017)
  101. On the pathway of ribosomal translocation. Xie P. Int. J. Biol. Macromol. 92 401-415 (2016)
  102. Purification of 30S ribosomal subunit by streptavidin affinity chromatography. Golovina AY, Bogdanov AA, Dontsova OA, Sergiev PV. Biochimie 92 914-917 (2010)
  103. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function. Bowen AM, Musalgaonkar S, Moomau CA, Gulay SP, Mirvis M, Dinman JD. Translation (Austin) 3 e1117703 (2015)
  104. Synthesis of aminoacylated N(6),N(6)-dimethyladenosine solid support for efficient access to hydrolysis-resistant 3'-charged tRNA mimics. Neuner S, Micura R. Bioorg. Med. Chem. 22 6989-6995 (2014)
  105. Staphylococcus aureus 30S Ribosomal Subunit Purification and Its Biochemical and Cryo-EM Analysis. Belinite M, Khusainov I, Marzi S. Bio Protoc 12 e4532 (2022)
  106. Another burst of smoke: atomic resolution structures of RF3 bound to the ribosome. McDonald ME, Green R. RNA 18 605-609 (2012)
  107. DETECTING CONFORMATIONAL DIFFERENCES BETWEEN RNA 3D STRUCTURES. Rahrig RR, Zirbel CL. JP J Biostat 12 99-115 (2015)
  108. Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro. Aspden JL, Jackson RJ. RNA 16 1130-1137 (2010)
  109. Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Xie P. Biochem Biophys Rep 2 87-93 (2015)
  110. Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Rollins MG, Shasmal M, Meade N, Astar H, Shen PS, Walsh D. Cell Rep 36 109663 (2021)
  111. Selective Translation of Low Abundance and Upregulated Transcripts in Halobacterium salinarum. López García de Lomana A, Kusebauch U, Raman AV, Pan M, Turkarslan S, Lorenzetti APR, Moritz RL, Baliga NS. mSystems 5 (2020)
  112. Super-resolution force spectroscopy reveals ribosomal motion at sub-nucleotide steps. Jia H, Wang Y, Xu S. Chem. Commun. (Camb.) 54 5883-5886 (2018)
  113. The Intersubunit Bridge B1b of the Bacterial Ribosome Facilitates Initiation of Protein Synthesis and Maintenance of Translational Fidelity. Lilleorg S, Reier K, Remme J, Liiv A. J. Mol. Biol. 429 1067-1080 (2017)
  114. Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1. Graf M, Huter P, Maracci C, Peterek M, Rodnina MV, Wilson DN. Nat Commun 9 3053 (2018)
  115. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Svetlov MS, Cohen S, Alsuhebany N, Vázquez-Laslop N, Mankin AS. Proc Natl Acad Sci U S A 117 1971-1975 (2020)
  116. Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting. Poulis P, Patel A, Rodnina MV, Adio S. Nat Commun 13 4231 (2022)
  117. Annealing synchronizes the 70S ribosome into a minimum-energy conformation. Chu X, Su X, Liu M, Li L, Li T, Qin Y, Lu G, Qi L, Liu Y, Lin J, Shen QT. Proc Natl Acad Sci U S A 119 e2111231119 (2022)
  118. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, Tinoco I, Bustamante C. Mol. Cell 75 1007-1019.e5 (2019)
  119. Comparative Analysis of Structural and Dynamical Features of Ribosome Upon Association With mRNA Reveals Potential Role of Ribosomal Proteins. Bheemireddy S, Sandhya S, Srinivasan N. Front Mol Biosci 8 654164 (2021)
  120. Insights into translocation mechanism and ribosome evolution from cryo-EM structures of translocation intermediates of Giardia intestinalis. Majumdar S, Emmerich A, Krakovka S, Mandava CS, Svärd SG, Sanyal S. Nucleic Acids Res 51 3436-3451 (2023)
  121. Interactions of 2'-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site. Jasiński M, Kulik M, Wojciechowska M, Stolarski R, Trylska J. PLoS ONE 13 e0191138 (2018)
  122. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs. Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV. FEBS Lett. 593 1468-1482 (2019)
  123. Pseudouridine modifications influence binding of aminoglycosides to helix 69 of bacterial ribosomes. Sakakibara Y, Chow CS. Org. Biomol. Chem. 15 8535-8543 (2017)
  124. Quantifying the Relationship between Single-Molecule Probes and Subunit Rotation in the Ribosome. Levi M, Nguyen K, Dukaye L, Whitford PC. Biophys. J. 113 2777-2786 (2017)
  125. Real-time evidence for EF-G-induced dynamics of helix 44 in 16S rRNA. Tanner DR, Hedrick EG, Hill WE. J. Mol. Biol. 422 45-57 (2012)
  126. Ribosomal protein eL24, involved in two intersubunit bridges, stimulates translation initiation and elongation. Kisly I, Remme J, Tamm T. Nucleic Acids Res. 47 406-420 (2019)
  127. Shared requirements for key residues in the antibiotic resistance enzymes ErmC and ErmE suggest a common mode of RNA recognition. Rowe SJ, Mecaskey RJ, Nasef M, Talton RC, Sharkey RE, Halliday JC, Dunkle JA. J Biol Chem 295 17476-17485 (2020)
  128. Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus. Belinite M, Khusainov I, Soufari H, Marzi S, Romby P, Yusupov M, Hashem Y. Front Mol Biosci 8 738752 (2021)
  129. Structural inventory of cotranslational protein folding by the eukaryotic RAC complex. Kišonaitė M, Wild K, Lapouge K, Gesé GV, Kellner N, Hurt E, Sinning I. Nat Struct Mol Biol (2023)
  130. Uniting Native Capillary Electrophoresis and Multistage Ultraviolet Photodissociation Mass Spectrometry for Online Separation and Characterization of Escherichia coli Ribosomal Proteins and Protein Complexes. Mehaffey MR, Xia Q, Brodbelt JS. Anal Chem 92 15202-15211 (2020)