4v4r Citations

Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon.

Cell 123 1255-66 (2005)
Related entries: 4v4s, 4v4t

Cited: 141 times
EuropePMC logo PMID: 16377566

Abstract

During protein synthesis, translational release factors catalyze the release of the polypeptide chain when a stop codon on the mRNA reaches the A site of the ribosome. The detailed mechanism of this process is currently unknown. We present here the crystal structures of the ribosome from Thermus thermophilus with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9 Angstrom and 6.7 Angstrom, respectively. The structures reveal details of interactions of the factors with the ribosome and mRNA, including elements previously implicated in decoding and peptide release. They also shed light on conformational changes both in the factors and in the ribosome during termination. Differences seen in the interaction of RF1 and RF2 with the L11 region of the ribosome allow us to rationalize previous biochemical data. Finally, this work demonstrates the feasibility of crystallizing ribosomes with bound factors at a defined state along the translational pathway.

Reviews citing this publication (34)

  1. What recent ribosome structures have revealed about the mechanism of translation. Schmeing TM, Ramakrishnan V. Nature 461 1234-1242 (2009)
  2. A structural understanding of the dynamic ribosome machine. Steitz TA. Nat Rev Mol Cell Biol 9 242-253 (2008)
  3. Fidelity at the molecular level: lessons from protein synthesis. Zaher HS, Green R. Cell 136 746-762 (2009)
  4. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. Chem Rev 118 4177-4338 (2018)
  5. Structural dynamics of the ribosome. Korostelev A, Ermolenko DN, Noller HF. Curr Opin Chem Biol 12 674-683 (2008)
  6. A complex assembly landscape for the 30S ribosomal subunit. Sykes MT, Williamson JR. Annu Rev Biophys 38 197-215 (2009)
  7. Ribosome structure and dynamics during translocation and termination. Dunkle JA, Cate JH. Annu Rev Biophys 39 227-244 (2010)
  8. Structural aspects of translation termination on the ribosome. Korostelev AA. RNA 17 1409-1421 (2011)
  9. Correlating ribosome function with high-resolution structures. Bashan A, Yonath A. Trends Microbiol 16 326-335 (2008)
  10. Structure and function of the T-loop structural motif in noncoding RNAs. Chan CW, Chetnani B, Mondragón A. Wiley Interdiscip Rev RNA 4 507-522 (2013)
  11. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Simonović M, Steitz TA. Biochim Biophys Acta 1789 612-623 (2009)
  12. The termination of translation. Petry S, Weixlbaumer A, Ramakrishnan V. Curr Opin Struct Biol 18 70-77 (2008)
  13. tRNA mimicry in translation termination and beyond. Nakamura Y, Ito K. Wiley Interdiscip Rev RNA 2 647-668 (2011)
  14. Next-generation genetic code expansion. Arranz-Gibert P, Vanderschuren K, Isaacs FJ. Curr Opin Chem Biol 46 203-211 (2018)
  15. Crystal structures of 70S ribosomes bound to release factors RF1, RF2 and RF3. Zhou J, Korostelev A, Lancaster L, Noller HF. Curr Opin Struct Biol 22 733-742 (2012)
  16. Engineered Ribosomes for Basic Science and Synthetic Biology. d'Aquino AE, Kim DS, Jewett MC. Annu Rev Chem Biomol Eng 9 311-340 (2018)
  17. The mechanism of peptidyl transfer catalysis by the ribosome. Leung EK, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. Annu Rev Biochem 80 527-555 (2011)
  18. Molecular recognition and catalysis in translation termination complexes. Klaholz BP. Trends Biochem Sci 36 282-292 (2011)
  19. Termination of protein synthesis in mammalian mitochondria. Chrzanowska-Lightowlers ZM, Pajak A, Lightowlers RN. J Biol Chem 286 34479-34485 (2011)
  20. The chemistry of peptidyltransferase center-targeted antibiotics: enzymatic resistance and approaches to countering resistance. McCusker KP, Fujimori DG. ACS Chem Biol 7 64-72 (2012)
  21. Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Yusupova G, Yusupov M. Philos Trans R Soc Lond B Biol Sci 372 20160184 (2017)
  22. Modulating the activity of the peptidyl transferase center of the ribosome. Beringer M. RNA 14 795-801 (2008)
  23. Molecular mimicry: structural camouflage of proteins and nucleic acids. Tsonis PA, Dwivedi B. Biochim Biophys Acta 1783 177-187 (2008)
  24. Two distinct conformations of the conserved RNA-rich decoding center of the small ribosomal subunit are recognized by tRNAs and release factors. Youngman EM, Cochella L, Brunelle JL, He S, Green R. Cold Spring Harb Symp Quant Biol 71 545-549 (2006)
  25. Bacterial 5S rRNA-binding proteins of the CTC family. Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. Biochemistry (Mosc) 73 1405-1417 (2008)
  26. Efforts and Challenges in Engineering the Genetic Code. Lin X, Yu AC, Chan TF. Life (Basel) 7 E12 (2017)
  27. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Int J Mol Sci 23 938 (2022)
  28. Protein methylation in mitochondria. Małecki JM, Davydova E, Falnes PØ. J Biol Chem 298 101791 (2022)
  29. Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome. Poole ES, Young DJ, Askarian-Amiri ME, Scarlett DJ, Tate WP. Cell Res 17 591-607 (2007)
  30. Maintaining mitochondrial ribosome function: The role of ribosome rescue and recycling factors. Nadler F, Lavdovskaia E, Richter-Dennerlein R. RNA Biol 19 117-131 (2022)
  31. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Barik S. Int J Mol Sci 23 489 (2022)
  32. Mechanisms of ribosome recycling in bacteria and mitochondria: a structural perspective. Seely SM, Gagnon MG. RNA Biol 19 662-677 (2022)
  33. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. Korostelev AA. Biochemistry (Mosc) 86 1107-1121 (2021)
  34. RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary). Bogdanov AA, Karpov VL. Biochemistry (Mosc) 71 915-924 (2006)

Articles citing this publication (107)

  1. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Cell 126 1065-1077 (2006)
  2. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. Science 334 941-948 (2011)
  3. Structural basis for translation termination on the 70S ribosome. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. Nature 454 852-857 (2008)
  4. Insights into translational termination from the structure of RF2 bound to the ribosome. Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V. Science 322 953-956 (2008)
  5. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV. Cell 125 1125-1136 (2006)
  6. Structural basis for messenger RNA movement on the ribosome. Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Nature 444 391-394 (2006)
  7. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Wang K, Neumann H, Peak-Chew SY, Chin JW. Nat Biotechnol 25 770-777 (2007)
  8. Crystal structure of a translation termination complex formed with release factor RF2. Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF. Proc Natl Acad Sci U S A 105 19684-19689 (2008)
  9. The process of mRNA-tRNA translocation. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ. Proc Natl Acad Sci U S A 104 19671-19678 (2007)
  10. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. Schmied WH, Elsässer SJ, Uttamapinant C, Chin JW. J Am Chem Soc 136 15577-15583 (2014)
  11. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CM. EMBO J 28 755-765 (2009)
  12. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. Vázquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS. EMBO J 29 3108-3117 (2010)
  13. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L, Wang C, Cheng Z, Liu Y, Zavialov A, Gursky R, Sanyal S, Ehrenberg M, Frank J, Song H. Cell 129 929-941 (2007)
  14. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S. Nat Struct Mol Biol 17 1136-1143 (2010)
  15. Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. White J, Li Z, Sardana R, Bujnicki JM, Marcotte EM, Johnson AW. Mol Cell Biol 28 3151-3161 (2008)
  16. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Antonicka H, Ostergaard E, Sasarman F, Weraarpachai W, Wibrand F, Pedersen AM, Rodenburg RJ, van der Knaap MS, Smeitink JA, Chrzanowska-Lightowlers ZM, Shoubridge EA. Am J Hum Genet 87 115-122 (2010)
  17. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. Helgstrand M, Mandava CS, Mulder FA, Liljas A, Sanyal S, Akke M. J Mol Biol 365 468-479 (2007)
  18. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z. Mol Cell 27 745-757 (2007)
  19. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF. Mol Cell 23 865-874 (2006)
  20. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Ramu H, Vázquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS. Mol Cell 41 321-330 (2011)
  21. Phylogenetic distribution of translational GTPases in bacteria. Margus T, Remm M, Tenson T. BMC Genomics 8 15 (2007)
  22. Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Mukai T, Hoshi H, Ohtake K, Takahashi M, Yamaguchi A, Hayashi A, Yokoyama S, Sakamoto K. Sci Rep 5 9699 (2015)
  23. Recognition of the amber UAG stop codon by release factor RF1. Korostelev A, Zhu J, Asahara H, Noller HF. EMBO J 29 2577-2585 (2010)
  24. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. Atkinson GC, Baldauf SL, Hauryliuk V. BMC Evol Biol 8 290 (2008)
  25. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Jin H, Kelley AC, Loakes D, Ramakrishnan V. Proc Natl Acad Sci U S A 107 8593-8598 (2010)
  26. Crystal structure of the ribosome recycling factor bound to the ribosome. Weixlbaumer A, Petry S, Dunham CM, Selmer M, Kelley AC, Ramakrishnan V. Nat Struct Mol Biol 14 733-737 (2007)
  27. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Ramrath DJ, Yamamoto H, Rother K, Wittek D, Pech M, Mielke T, Loerke J, Scheerer P, Ivanov P, Teraoka Y, Shpanchenko O, Nierhaus KH, Spahn CM. Nature 485 526-529 (2012)
  28. Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A, Savchenko A, Joachimiak A, Dontsova OA. J Biol Chem 282 5880-5887 (2007)
  29. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Shaw JJ, Green R. Mol Cell 28 458-467 (2007)
  30. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. Pisareva VP, Pisarev AV, Hellen CU, Rodnina MV, Pestova TV. J Biol Chem 281 40224-40235 (2006)
  31. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Youngman EM, He SL, Nikstad LJ, Green R. Mol Cell 28 533-543 (2007)
  32. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL. Nat Struct Mol Biol 16 861-868 (2009)
  33. HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. Figaro S, Scrima N, Buckingham RH, Heurgué-Hamard V. FEBS Lett 582 2352-2356 (2008)
  34. A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Trobro S, Aqvist J. Mol Cell 27 758-766 (2007)
  35. Eukaryotic translational termination efficiency is influenced by the 3' nucleotides within the ribosomal mRNA channel. Cridge AG, Crowe-McAuliffe C, Mathew SF, Tate WP. Nucleic Acids Res 46 1927-1944 (2018)
  36. Different substrate-dependent transition states in the active site of the ribosome. Kuhlenkoetter S, Wintermeyer W, Rodnina MV. Nature 476 351-354 (2011)
  37. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J. J Mol Biol 357 1144-1153 (2006)
  38. Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. Jenner L, Rees B, Yusupov M, Yusupova G. EMBO Rep 8 846-850 (2007)
  39. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination. Ejby M, Sørensen MA, Pedersen S. Proc Natl Acad Sci U S A 104 19410-19415 (2007)
  40. Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. Sato NS, Hirabayashi N, Agmon I, Yonath A, Suzuki T. Proc Natl Acad Sci U S A 103 15386-15391 (2006)
  41. Principles of stop-codon reading on the ribosome. Sund J, Andér M, Aqvist J. Nature 465 947-950 (2010)
  42. Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements. Kavran JM, Steitz TA. J Mol Biol 371 1047-1059 (2007)
  43. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. Phys Biol 5 046005 (2008)
  44. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Nucleic Acids Res 41 4573-4586 (2013)
  45. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N. Nucleic Acids Res 35 5130-5140 (2007)
  46. Structural and functional basis for RNA cleavage by Ire1. Korennykh AV, Korostelev AA, Egea PF, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. BMC Biol 9 47 (2011)
  47. L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Jonker HR, Ilin S, Grimm SK, Wöhnert J, Schwalbe H. Nucleic Acids Res 35 441-454 (2007)
  48. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors. Pierson WE, Hoffer ED, Keedy HE, Simms CL, Dunham CM, Zaher HS. Cell Rep 17 11-18 (2016)
  49. Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Zhou Y, Asahara H, Gaucher EA, Chong S. Nucleic Acids Res 40 7932-7945 (2012)
  50. On the pH dependence of class-1 RF-dependent termination of mRNA translation. Indrisiunaite G, Pavlov MY, Heurgué-Hamard V, Ehrenberg M. J Mol Biol 427 1848-1860 (2015)
  51. Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Zoldák G, Redecke L, Svergun DI, Konarev PV, Voertler CS, Dobbek H, Sedlák E, Sprinzl M. Nucleic Acids Res 35 1343-1353 (2007)
  52. Pseudouridines in rRNA helix 69 play a role in loop stacking interactions. Desaulniers JP, Chang YC, Aduri R, Abeysirigunawardena SC, SantaLucia J, Chow CS. Org Biomol Chem 6 3892-3895 (2008)
  53. RF3:GTP promotes rapid dissociation of the class 1 termination factor. Koutmou KS, McDonald ME, Brunelle JL, Green R. RNA 20 609-620 (2014)
  54. The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Fu Z, Indrisiunaite G, Kaledhonkar S, Shah B, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J. Nat Commun 10 2579 (2019)
  55. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. Bulygin KN, Khairulina YS, Kolosov PM, Ven'yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Kisselev LL, Karpova GG. RNA 16 1902-1914 (2010)
  56. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. Shalev M, Baasov T. Medchemcomm 5 1092-1105 (2014)
  57. Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset JP, Kisselev L. Proc Natl Acad Sci U S A 104 10824-10829 (2007)
  58. Dynamics of ribosomes and release factors during translation termination in E. coli. Adio S, Sharma H, Senyushkina T, Karki P, Maracci C, Wohlgemuth I, Holtkamp W, Peske F, Rodnina MV. Elife 7 e34252 (2018)
  59. Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. Walker SE, Fredrick K. J Mol Biol 360 599-609 (2006)
  60. Historical Article Unraveling the structure of the ribosome (Nobel Lecture). Ramakrishnan V. Angew Chem Int Ed Engl 49 4355-4380 (2010)
  61. Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15. Jiang L, Schaffitzel C, Bingel-Erlenmeyer R, Ban N, Korber P, Koning RI, de Geus DC, Plaisier JR, Abrahams JP. J Mol Biol 386 1357-1367 (2009)
  62. Role of the individual domains of translation termination factor eRF1 in GTP binding to eRF3. Kononenko AV, Mitkevich VA, Dubovaya VI, Kolosov PM, Makarov AA, Kisselev LL. Proteins 70 388-393 (2008)
  63. Secondary structure of a conserved domain in an intron of influenza A M1 mRNA. Jiang T, Kennedy SD, Moss WN, Kierzek E, Turner DH. Biochemistry 53 5236-5248 (2014)
  64. Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP. RNA 16 1146-1155 (2010)
  65. Cryo-EM visualization of the ribosome in termination complex with apo-RF3 and RF1. Pallesen J, Hashem Y, Korkmaz G, Koripella RK, Huang C, Ehrenberg M, Sanyal S, Frank J. Elife 2 e00411 (2013)
  66. Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. Santos N, Zhu J, Donohue JP, Korostelev AA, Noller HF. Structure 21 1258-1263 (2013)
  67. Distinct roles for release factor 1 and release factor 2 in translational quality control. Petropoulos AD, McDonald ME, Green R, Zaher HS. J Biol Chem 289 17589-17596 (2014)
  68. Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons. Baranov PV, Vestergaard B, Hamelryck T, Gesteland RF, Nyborg J, Atkins JF. Biol Direct 1 28 (2006)
  69. Ribosome engineering to promote new crystal forms. Selmer M, Gao YG, Weixlbaumer A, Ramakrishnan V. Acta Crystallogr D Biol Crystallogr 68 578-583 (2012)
  70. A novel chromatography system to isolate active ribosomes from pathogenic bacteria. Maguire BA, Wondrack LM, Contillo LG, Xu Z. RNA 14 188-195 (2008)
  71. Extensive ribosome and RF2 rearrangements during translation termination. Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. Elife 8 e46850 (2019)
  72. Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism. Zeng F, Jin H. RNA 22 49-60 (2016)
  73. Reprogramming the genetic code. Chin JW. EMBO J 30 2312-2324 (2011)
  74. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA. Abeysirigunawardena SC, Chow CS. RNA 14 782-792 (2008)
  75. Adenine and guanine recognition of stop codon is mediated by different N domain conformations of translation termination factor eRF1. Bulygin KN, Khairulina YS, Kolosov PM, Ven'yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Karpova GG. Nucleic Acids Res 39 7134-7146 (2011)
  76. Kinetics of stop codon recognition by release factor 1. Hetrick B, Lee K, Joseph S. Biochemistry 48 11178-11184 (2009)
  77. A conserved base-pair between tRNA and 23 S rRNA in the peptidyl transferase center is important for peptide release. Feinberg JS, Joseph S. J Mol Biol 364 1010-1020 (2006)
  78. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. Zhang Z, Sanbonmatsu KY, Voth GA. J Am Chem Soc 133 16828-16838 (2011)
  79. Purifying and positive selection in the evolution of stop codons. Belinky F, Babenko VN, Rogozin IB, Koonin EV. Sci Rep 8 9260 (2018)
  80. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA. Simonović M, Steitz TA. RNA 14 2372-2378 (2008)
  81. Structural features of a 3' splice site in influenza a. Chen JL, Kennedy SD, Turner DH. Biochemistry 54 3269-3285 (2015)
  82. The human mitochondrial translation release factor HMRF1L is methylated in the GGQ motif by the methyltransferase HMPrmC. Ishizawa T, Nozaki Y, Ueda T, Takeuchi N. Biochem Biophys Res Commun 373 99-103 (2008)
  83. Mechanism of premature translation termination on a sense codon. Svidritskiy E, Demo G, Korostelev AA. J Biol Chem 293 12472-12479 (2018)
  84. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human. Sumita M, Jiang J, SantaLucia J, Chow CS. Biopolymers 97 94-106 (2012)
  85. Repurposing tRNAs for nonsense suppression. Albers S, Beckert B, Matthies MC, Mandava CS, Schuster R, Seuring C, Riedner M, Sanyal S, Torda AE, Wilson DN, Ignatova Z. Nat Commun 12 3850 (2021)
  86. Eukaryotic class 1 translation termination factor eRF1--the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis. Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI. FEBS J 274 4223-4237 (2007)
  87. Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal DeltaA1916 mutation in the 23S rRNA of Escherichia coli. O'connor M. Mol Genet Genomics 278 307-315 (2007)
  88. Overcoming stalled translation in human mitochondria. Wesolowska MT, Richter-Dennerlein R, Lightowlers RN, Chrzanowska-Lightowlers ZM. Front Microbiol 5 374 (2014)
  89. R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria Escherichia coli. Korkmaz G, Sanyal S. J Biol Chem 292 15134-15142 (2017)
  90. In eubacteria, unlike eukaryotes, there is no evidence for selection favouring fail-safe 3' additional stop codons. Ho AT, Hurst LD. PLoS Genet 15 e1008386 (2019)
  91. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE. Diago-Navarro E, Mora L, Buckingham RH, Díaz-Orejas R, Lemonnier M. Mol Microbiol 71 66-78 (2009)
  92. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum. Vaishya S, Kumar V, Gupta A, Siddiqi MI, Habib S. Mol Microbiol 100 1080-1095 (2016)
  93. GGQ methylation enhances both speed and accuracy of stop codon recognition by bacterial class-I release factors. Pundir S, Ge X, Sanyal S. J Biol Chem 296 100681 (2021)
  94. NMR structure of the peptidyl-tRNA hydrolase domain from Pseudomonas syringae expands the structural coverage of the hydrolysis domains of class 1 peptide chain release factors. Singarapu KK, Xiao R, Acton T, Rost B, Montelione GT, Szyperski T. Proteins 71 1027-1031 (2008)
  95. Spurious regulatory connections dictate the expression-fitness landscape of translation factors. Lalanne JB, Parker DJ, Li GW. Mol Syst Biol 17 e10302 (2021)
  96. The codon specificity of eubacterial release factors is determined by the sequence and size of the recognition loop. Young DJ, Edgar CD, Poole ES, Tate WP. RNA 16 1623-1633 (2010)
  97. Trmt112 gene expression in mouse embryonic development. Gu T, He H, Zhang Y, Han Z, Hou G, Zeng T, Liu Q, Wu Q. Acta Histochem Cytochem 45 113-119 (2012)
  98. Purification of the large ribosomal subunit via its association with the small subunit. Simons SP, McLellan TJ, Aeed PA, Zaniewski RP, Desbonnet CR, Wondrack LM, Marr ES, Subashi TA, Dougherty TJ, Xu Z, Wang IK, LeMotte PK, Maguire BA. Anal Biochem 395 77-85 (2009)
  99. Collateral Toxicity Limits the Evolution of Bacterial Release Factor 2 toward Total Omnipotence. Abdalaal H, Pundir S, Ge X, Sanyal S, Näsvall J. Mol Biol Evol 37 2918-2930 (2020)
  100. Mitochondrial release factor in yeast: interplay of functional domains. Kutner J, Towpik J, Ginalski K, Boguta M. Curr Genet 53 185-192 (2008)
  101. Multiple conversion between the genes encoding bacterial class-I release factors. Ishikawa SA, Kamikawa R, Inagaki Y. Sci Rep 5 12406 (2015)
  102. NMR structure and dynamics of Q4D059, a kinetoplastid-specific and conserved protein from Trypanosoma cruzi. López-Castilla A, Pons T, Pires JR. J Struct Biol 190 11-20 (2015)
  103. Breaking the cycle of translation. Rife JP, Culver GM. Mol Cell 28 517-519 (2007)
  104. Dynamics of release factor recycling during translation termination in bacteria. Prabhakar A, Pavlov MY, Zhang J, Indrisiunaite G, Wang J, Lawson MR, Ehrenberg M, Puglisi JD. Nucleic Acids Res 51 5774-5790 (2023)
  105. Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control. Nadler F, Lavdovskaia E, Krempler A, Cruz-Zaragoza LD, Dennerlein S, Richter-Dennerlein R. Nat Commun 13 6406 (2022)
  106. Overexpression, crystallization and preliminary X-ray crystallographic analysis of release factor eRF1-1 from Arabidopsis thaliana. An Y, Lou Y, Xu Y. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1295-1298 (2013)
  107. When starting over makes more sense. Blanchard SC. ACS Chem Biol 4 89-92 (2009)