4uit Citations

Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition.

Abstract

Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.

Articles - 4uit mentioned but not cited (1)



Reviews citing this publication (36)

  1. The SWI/SNF complex in cancer - biology, biomarkers and therapy. Mittal P, Roberts CWM. Nat Rev Clin Oncol 17 435-448 (2020)
  2. Bromodomain inhibitors and cancer therapy: From structures to applications. Pérez-Salvia M, Esteller M. Epigenetics 12 323-339 (2017)
  3. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. St Pierre R, Kadoch C. Curr. Opin. Genet. Dev. 42 56-67 (2017)
  4. Clinical progress and pharmacology of small molecule bromodomain inhibitors. Theodoulou NH, Tomkinson NC, Prinjha RK, Humphreys PG. Curr Opin Chem Biol 33 58-66 (2016)
  5. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Expert Opin. Ther. Targets 20 783-799 (2016)
  6. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Galdeano C, Ciulli A. Future Med Chem 8 1655-1680 (2016)
  7. Progress in the Development of non-BET Bromodomain Chemical Probes. Theodoulou NH, Tomkinson NC, Prinjha RK, Humphreys PG. ChemMedChem 11 477-487 (2016)
  8. Targeting BRD9 for Cancer Treatment: A New Strategy. Zhu X, Liao Y, Tang L. Onco Targets Ther 13 13191-13200 (2020)
  9. Chemical probes and inhibitors of bromodomains outside the BET family. Moustakim M, Clark PGK, Hay DA, Dixon DJ, Brennan PE. Medchemcomm 7 2246-2264 (2016)
  10. Selective targeting of epigenetic reader domains. Greschik H, Schüle R, Günther T. Expert Opin Drug Discov 12 449-463 (2017)
  11. Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Jeffers V, Yang C, Huang S, Sullivan WJ. Microbiol. Mol. Biol. Rev. 81 (2017)
  12. Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Zaware N, Zhou MM. Curr Opin Chem Biol 39 116-125 (2017)
  13. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem. Rev. 118 1216-1252 (2018)
  14. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Ackloo S, Brown PJ, Müller S. Epigenetics 12 378-400 (2017)
  15. E3 ligase ligand optimization of Clinical PROTACs. Jiang H, Xiong H, Gu SX, Wang M. Front Chem 11 1098331 (2023)
  16. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Wanior M, Krämer A, Knapp S, Joerger AC. Oncogene 40 3637-3654 (2021)
  17. Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Zhu H, Wei T, Cai Y, Jin J. Molecules 25 (2020)
  18. Control of Stimulus-Dependent Responses in Macrophages by SWI/SNF Chromatin Remodeling Complexes. Gatchalian J, Liao J, Maxwell MB, Hargreaves DC. Trends Immunol 41 126-140 (2020)
  19. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum. Plowright AT, Ottmann C, Arkin M, Auberson YP, Timmerman H, Waldmann H. Cell Chem Biol 24 1058-1065 (2017)
  20. Next-Generation Drugs and Probes for Chromatin Biology: From Targeted Protein Degradation to Phase Separation. Cermakova K, Hodges HC. Molecules 23 (2018)
  21. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Itoh Y. Chem Rec 18 1681-1700 (2018)
  22. Functional Roles of Bromodomain Proteins in Cancer. Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Cancers (Basel) 13 3606 (2021)
  23. Histone Modifications and Their Targeting in Lymphoid Malignancies. Fernández-Serrano M, Winkler R, Santos JC, Le Pannérer MM, Buschbeck M, Roué G. Int J Mol Sci 23 253 (2021)
  24. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. J Pers Med 11 336 (2021)
  25. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Bracken AP, Brien GL, Verrijzer CP. Genes Dev. 33 936-959 (2019)
  26. Emerging targeted and cellular therapies in the treatment of advanced and metastatic synovial sarcoma. Fuchs JR, Schulte BC, Fuchs JW, Agulnik M. Front Oncol 13 1123464 (2023)
  27. Epigenetic Targets in Synovial Sarcoma: A Mini-Review. Hale R, Sandakly S, Shipley J, Walters Z. Front Oncol 9 1078 (2019)
  28. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Semin Cell Dev Biol S1084-9521(22)00293-2 (2022)
  29. Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies. Markouli M, Strepkos D, Piperi C. Int J Mol Sci 23 13657 (2022)
  30. Research progress of selective small molecule bromodomain-containing protein 9 inhibitors. Hui M, Jian Z, Peiyuan Z, Zhenwei W, Huibin Z. Future Med Chem 10 895-906 (2018)
  31. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Zhang FL, Li DQ. Int J Mol Sci 23 12815 (2022)
  32. Targeting Epigenetic Regulatory Enzymes for Cancer Therapeutics: Novel Small-Molecule Epidrug Development. Jin Y, Liu T, Luo H, Liu Y, Liu D. Front Oncol 12 848221 (2022)
  33. Targeting bromodomain-containing proteins: research advances of drug discovery. Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Mol Biomed 4 13 (2023)
  34. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Signal Transduct Target Ther 4 62 (2019)
  35. Treatment at Relapse for Synovial Sarcoma of Children, Adolescents and Young Adults: From the State of Art to Future Clinical Perspectives. Ferrari A, Berlanga P, Gatz SA, Schoot RA, van Noesel MM, Hovsepyan S, Chiaravalli S, Bergamaschi L, Minard-Colin V, Corradini N, Alaggio R, Gasparini P, Brennan B, Casanova M, Pasquali S, Orbach D. Cancer Manag Res 15 1183-1196 (2023)
  36. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Ho PJ, Lloyd SM, Bao X. Development 146 (2019)

Articles citing this publication (52)

  1. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, Johnson SF, Carrasco RD, Lazo S, Bronson RT, Davis SP, Lobera M, Nolan MA, Letai A. Nature 543 428-432 (2017)
  2. The Bromodomain: A New Target in Emerging Epigenetic Medicine. Smith SG, Zhou MM. ACS Chem Biol 11 598-608 (2016)
  3. Structure-Based Design of an in Vivo Active Selective BRD9 Inhibitor. Martin LJ, Koegl M, Bader G, Cockcroft XL, Fedorov O, Fiegen D, Gerstberger T, Hofmann MH, Hohmann AF, Kessler D, Knapp S, Knesl P, Kornigg S, Müller S, Nar H, Rogers C, Rumpel K, Schaaf O, Steurer S, Tallant C, Vakoc CR, Zeeb M, Zoephel A, Pearson M, Boehmelt G, McConnell D. J. Med. Chem. 59 4462-4475 (2016)
  4. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR. Nat. Chem. Biol. 12 672-679 (2016)
  5. Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS, Dastjerdi S, Wühr M, Dhe-Paganon S, Armstrong SA, Bradner JE. Angew. Chem. Int. Ed. Engl. 56 5738-5743 (2017)
  6. Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice. Sullivan JM, Badimon A, Schaefer U, Ayata P, Gray J, Chung CW, von Schimmelmann M, Zhang F, Garton N, Smithers N, Lewis H, Tarakhovsky A, Prinjha RK, Schaefer A. J. Exp. Med. 212 1771-1781 (2015)
  7. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Schwörer S, Becker F, Feller C, Baig AH, Köber U, Henze H, Kraus JM, Xin B, Lechel A, Lipka DB, Varghese CS, Schmidt M, Rohs R, Aebersold R, Medina KL, Kestler HA, Neri F, von Maltzahn J, Tümpel S, Rudolph KL. Nature 540 428-432 (2016)
  8. BRD9 Is a Critical Regulator of Androgen Receptor Signaling and Prostate Cancer Progression. Alpsoy A, Utturkar SM, Carter BC, Dhiman A, Torregrosa-Allen SE, Currie MP, Elzey BD, Dykhuizen EC. Cancer Res 81 820-833 (2021)
  9. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Picaud S, Leonards K, Lambert JP, Dovey O, Wells C, Fedorov O, Monteiro O, Fujisawa T, Wang CY, Lingard H, Tallant C, Nikbin N, Guetzoyan L, Ingham R, Ley SV, Brennan P, Muller S, Samsonova A, Gingras AC, Schwaller J, Vassiliou G, Knapp S, Filippakopoulos P. Sci Adv 2 e1600760 (2016)
  10. Vitamin D Switches BAF Complexes to Protect β Cells. Wei Z, Yoshihara E, He N, Hah N, Fan W, Pinto AFM, Huddy T, Wang Y, Ross B, Estepa G, Dai Y, Ding N, Sherman MH, Fang S, Zhao X, Liddle C, Atkins AR, Yu RT, Downes M, Evans RM. Cell 173 1135-1149.e15 (2018)
  11. A New Way Forward in Cancer Drug Discovery: Inhibiting the SWI/SNF Chromatin Remodelling Complex. Zinzalla G. Chembiochem 17 677-682 (2016)
  12. Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex. Sutherell CL, Tallant C, Monteiro OP, Yapp C, Fuchs JE, Fedorov O, Siejka P, Müller S, Knapp S, Brenton JD, Brennan PE, Ley SV. J. Med. Chem. 59 5095-5101 (2016)
  13. SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Saqcena M, Leandro-Garcia LJ, Maag JLV, Tchekmedyian V, Krishnamoorthy GP, Tamarapu PP, Tiedje V, Reuter V, Knauf JA, de Stanchina E, Xu B, Liao XH, Refetoff S, Ghossein R, Chi P, Ho AL, Koche RP, Fagin JA. Cancer Discov 11 1158-1175 (2021)
  14. Discovery and Optimization of a Selective Ligand for the Switch/Sucrose Nonfermenting-Related Bromodomains of Polybromo Protein-1 by the Use of Virtual Screening and Hydration Analysis. Myrianthopoulos V, Gaboriaud-Kolar N, Tallant C, Hall ML, Grigoriou S, Brownlee PM, Fedorov O, Rogers C, Heidenreich D, Wanior M, Drosos N, Mexia N, Savitsky P, Bagratuni T, Kastritis E, Terpos E, Filippakopoulos P, Müller S, Skaltsounis AL, Downs JA, Knapp S, Mikros E. J. Med. Chem. 59 8787-8803 (2016)
  15. Structural Basis of Inhibitor Selectivity in the BRD7/9 Subfamily of Bromodomains. Karim RM, Chan A, Zhu JY, Schönbrunn E. J Med Chem 63 3227-3237 (2020)
  16. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Michel BC, D'Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, Valencia AM, Zhou Q, Bocker M, Soares LMM, Pan J, Remillard DI, Lareau CA, Zullow HJ, Fortoul N, Gray NS, Bradner JE, Chan HM, Kadoch C. Nat. Cell Biol. 20 1410-1420 (2018)
  17. Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains. Bouché L, Christ CD, Siegel S, Fernández-Montalván AE, Holton SJ, Fedorov O, Ter Laak A, Sugawara T, Stöckigt D, Tallant C, Bennett J, Monteiro O, Díaz-Sáez L, Siejka P, Meier J, Pütter V, Weiske J, Müller S, Huber KVM, Hartung IV, Haendler B. J. Med. Chem. 60 4002-4022 (2017)
  18. BRD9 Inhibition, Alone or in Combination with Cytostatic Compounds as a Therapeutic Approach in Rhabdoid Tumors. Krämer KF, Moreno N, Frühwald MC, Kerl K. Int J Mol Sci 18 (2017)
  19. Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance. Crawford TD, Vartanian S, Côté A, Bellon S, Duplessis M, Flynn EM, Hewitt M, Huang HR, Kiefer JR, Murray J, Nasveschuk CG, Pardo E, Romero FA, Sandy P, Tang Y, Taylor AM, Tsui V, Wang J, Wang S, Zawadzke L, Albrecht BK, Magnuson SR, Cochran AG, Stokoe D. Bioorg. Med. Chem. Lett. 27 3534-3541 (2017)
  20. NMR Fragment Screening Hit Induces Plasticity of BRD7/9 Bromodomains. Wang N, Li F, Bao H, Li J, Wu J, Ruan K. Chembiochem 17 1456-1463 (2016)
  21. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC. Nat Commun 9 5139 (2018)
  22. Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple). Batiste L, Unzue A, Dolbois A, Hassler F, Wang X, Deerain N, Zhu J, Spiliotopoulos D, Nevado C, Caflisch A. ACS Cent Sci 4 180-188 (2018)
  23. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A. J. Med. Chem. 62 699-726 (2019)
  24. Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain. Spiliotopoulos D, Zhu J, Wamhoff EC, Deerain N, Marchand JR, Aretz J, Rademacher C, Caflisch A. Bioorg. Med. Chem. Lett. 27 2472-2478 (2017)
  25. GBAF, a small BAF sub-complex with big implications: a systematic review. Innis SM, Cabot B. Epigenetics Chromatin 13 48 (2020)
  26. Optimization of a "bump-and-hole" approach to allele-selective BET bromodomain inhibition. Runcie AC, Zengerle M, Chan KH, Testa A, van Beurden L, Baud MGJ, Epemolu O, Ellis LCJ, Read KD, Coulthard V, Brien A, Ciulli A. Chem Sci 9 2452-2468 (2018)
  27. Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. Meier JC, Tallant C, Fedorov O, Witwicka H, Hwang SY, van Stiphout RG, Lambert JP, Rogers C, Yapp C, Gerstenberger BS, Fedele V, Savitsky P, Heidenreich D, Daniels DL, Owen DR, Fish PV, Igoe NM, Bayle ED, Haendler B, Oppermann UCT, Buffa F, Brennan PE, Müller S, Gingras AC, Odgren PR, Birnbaum MJ, Knapp S. ACS Chem. Biol. 12 2619-2630 (2017)
  28. BRD9 Inhibition Attenuates Matrix Degradation and Pyroptosis in Nucleus Pulposus by Modulating the NOX1/ROS/NF-κB axis. Deng Z, Zhang Y, Zhu Y, Zhu J, Li S, Huang Z, Qin T, Wu J, Zhang C, Chen W, Huang D, Ye W. Inflammation 46 1002-1021 (2023)
  29. BRD9 Inhibition by Natural Polyphenols Targets DNA Damage/Repair and Apoptosis in Human Colon Cancer Cells. Kapoor S, Damiani E, Wang S, Dharmanand R, Tripathi C, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. Nutrients 14 4317 (2022)
  30. BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Sevinç K, Sevinç GG, Cavga AD, Philpott M, Kelekçi S, Can H, Cribbs AP, Yıldız AB, Yılmaz A, Ayar ES, Arabacı DH, Dunford JE, Ata D, Sigua LH, Qi J, Oppermann U, Onder TT. Stem Cell Reports 17 2629-2642 (2022)
  31. Epigenetic and pharmacological control of pigmentation via Bromodomain Protein 9 (BRD9). Basuroy T, Dreier M, Baum C, Blomquist T, Trumbly R, Filipp FV, de la Serna IL. Pigment Cell Melanoma Res 36 19-32 (2023)
  32. In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors. Tasker NR, Rastelli EJ, Blanco IK, Burnett JC, Sharlow ER, Lazo JS, Wipf P. Org Biomol Chem 17 2448-2466 (2019)
  33. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Brien GL, Remillard D, Shi J, Hemming ML, Chabon J, Wynne K, Dillon ET, Cagney G, Van Mierlo G, Baltissen MP, Vermeulen M, Qi J, Fröhling S, Gray NS, Bradner JE, Vakoc CR, Armstrong SA. Elife 7 (2018)
  34. A chemical toolbox for the study of bromodomains and epigenetic signaling. Wu Q, Heidenreich D, Zhou S, Ackloo S, Krämer A, Nakka K, Lima-Fernandes E, Deblois G, Duan S, Vellanki RN, Li F, Vedadi M, Dilworth J, Lupien M, Brennan PE, Arrowsmith CH, Müller S, Fedorov O, Filippakopoulos P, Knapp S. Nat Commun 10 1915 (2019)
  35. BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning. Liu T, Mi L, Xiong J, Orchard P, Yu Q, Yu L, Zhao XY, Meng ZX, Parker SCJ, Lin JD, Li S. Nat Commun 11 2379 (2020)
  36. BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Del Gaudio N, Di Costanzo A, Liu NQ, Conte L, Migliaccio A, Vermeulen M, Martens JHA, Stunnenberg HG, Nebbioso A, Altucci L. Cell Death Dis 10 338 (2019)
  37. BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Ahmed NS, Gatchalian J, Ho J, Burns MJ, Hah N, Wei Z, Downes M, Evans RM, Hargreaves DC. Proc Natl Acad Sci U S A 119 e2110812119 (2022)
  38. BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, Zheng A, Zhou M, Jiang X. Nat Commun 14 1413 (2023)
  39. Bromodomain Factor 5 as a Target for Antileishmanial Drug Discovery. Russell CN, Carter JL, Borgia JM, Bush J, Calderón F, Gabarró R, Conway SJ, Mottram JC, Wilkinson AJ, Jones NG. ACS Infect Dis 9 2340-2357 (2023)
  40. Bromodomain-containing protein 9 activates proliferation and epithelial-mesenchymal transition of colorectal cancer via the estrogen pathway in vivo and in vitro. Chen P, Du R, Chang Z, Gao W, Zhao W, Dong G. J Gastrointest Oncol 14 980-996 (2023)
  41. Design and Synthesis of LM146, a Potent Inhibitor of PB1 with an Improved Selectivity Profile over SMARCA2. Mélin L, Gesner E, Attwell S, Kharenko OA, van der Horst EH, Hansen HC, Gagnon A. ACS Omega 6 21327-21338 (2021)
  42. GEMC1 and MCIDAS interactions with SWI/SNF complexes regulate the multiciliated cell-specific transcriptional program. Lewis M, Terré B, Knobel PA, Cheng T, Lu H, Attolini CS, Smak J, Coyaud E, Garcia-Cao I, Sharma S, Vineethakumari C, Querol J, Gil-Gómez G, Piergiovanni G, Costanzo V, Peiró S, Raught B, Zhao H, Salvatella X, Roy S, Mahjoub MR, Stracker TH. Cell Death Dis 14 201 (2023)
  43. Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Hu Z, Zhou J, Jiang J, Yuan J, Zhang Y, Wei X, Loo N, Wang Y, Pan Y, Zhang T, Zhong X, Long M, Montone KT, Tanyi JL, Fan Y, Wang TL, Shih IM, Hu X, Zhang L. Nat Commun 10 733 (2019)
  44. Identification of Selective BRD9 Inhibitor via Integrated Computational Approach. Ali MM, Ashraf S, Nure-E-Alam M, Qureshi U, Khan KM, Ul-Haq Z. Int J Mol Sci 23 13513 (2022)
  45. Insight into selective mechanism of class of I-BRD9 inhibitors toward BRD9 based on molecular dynamics simulations. Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. Chem Biol Drug Des 93 163-176 (2019)
  46. Insights into the Ligand Binding to Bromodomain-Containing Protein 9 (BRD9): A Guide to the Selection of Potential Binders by Computational Methods. De Vita S, Chini MG, Bifulco G, Lauro G. Molecules 26 7192 (2021)
  47. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, He J, Buhl JL, Hoving EW, van Oudenaarden A, de Wit E, Drost J. Nat Commun 14 7762 (2023)
  48. Structural Analysis of Small-Molecule Binding to the BAZ2A and BAZ2B Bromodomains. Dalle Vedove A, Spiliotopoulos D, D'Agostino VG, Marchand JR, Unzue A, Nevado C, Lolli G, Caflisch A. ChemMedChem 13 1479-1487 (2018)
  49. Targeting BRD9 by I-BRD9 efficiently inhibits growth of acute myeloid leukemia cells. Zhou L, Yao Q, Li H, Chen J. Transl Cancer Res 10 3364-3372 (2021)
  50. The bromodomain containing protein BRD-9 orchestrates RAD51-RAD54 complex formation and regulates homologous recombination-mediated repair. Zhou Q, Huang J, Zhang C, Zhao F, Kim W, Tu X, Zhang Y, Nowsheen S, Zhu Q, Deng M, Chen Y, Qin B, Luo K, Liu B, Lou Z, Mutter RW, Yuan J. Nat Commun 11 2639 (2020)
  51. The repositioning of epigenetic probes/inhibitors identifies new anti-schistosomal lead compounds and chemotherapeutic targets. Whatley KCL, Padalino G, Whiteland H, Geyer KK, Hulme BJ, Chalmers IW, Forde-Thomas J, Ferla S, Brancale A, Hoffmann KF. PLoS Negl Trop Dis 13 e0007693 (2019)
  52. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Çınaroğlu SS, Biggin PC. Chem Sci 14 6792-6805 (2023)