4rer Citations

Structural basis of AMPK regulation by adenine nucleotides and glycogen.

Cell Res 25 50-66 (2015)
Related entries: 4red, 4rew

Cited: 101 times
EuropePMC logo PMID: 25412657

Abstract

AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

Reviews - 4rer mentioned but not cited (9)

  1. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Hardie DG, Schaffer BE, Brunet A. Trends Cell Biol 26 190-201 (2016)
  2. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. Ross FA, MacKintosh C, Hardie DG. FEBS J 283 2987-3001 (2016)
  3. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System. Salt IP, Hardie DG. Circ Res 120 1825-1841 (2017)
  4. Keeping the home fires burning: AMP-activated protein kinase. Hardie DG. J R Soc Interface 15 20170774 (2018)
  5. Regulation of AMP-activated protein kinase by natural and synthetic activators. Grahame Hardie D. Acta Pharm Sin B 6 1-19 (2016)
  6. Structure and Physiological Regulation of AMPK. Yan Y, Zhou XE, Xu HE, Melcher K. Int J Mol Sci 19 E3534 (2018)
  7. AMP-activated protein kinase - not just an energy sensor. Hardie DG, Lin SC. F1000Res 6 1724 (2017)
  8. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, Micol V. Nutrients 9 E907 (2017)
  9. AMPK and Diseases: State of the Art Regulation by AMPK-Targeting Molecules. Tarasiuk O, Miceli M, Di Domizio A, Nicolini G. Biology (Basel) 11 1041 (2022)

Articles - 4rer mentioned but not cited (13)

  1. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE, Melcher K. Cell Res 25 50-66 (2015)
  2. Nutrient sensing modulates malaria parasite virulence. Mancio-Silva L, Slavic K, Grilo Ruivo MT, Grosso AR, Modrzynska KK, Vera IM, Sales-Dias J, Gomes AR, MacPherson CR, Crozet P, Adamo M, Baena-Gonzalez E, Tewari R, Llinás M, Billker O, Mota MM. Nature 547 213-216 (2017)
  3. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C. Nat Commun 10 2538 (2019)
  4. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. Gu X, Yan Y, Novick SJ, Kovach A, Goswami D, Ke J, Tan MHE, Wang L, Li X, de Waal PW, Webb MR, Griffin PR, Xu HE, Melcher K. J Biol Chem 292 12653-12666 (2017)
  5. Letter Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M. FEBS Lett 591 3625-3636 (2017)
  6. Structure of an AMPK complex in an inactive, ATP-bound state. Yan Y, Mukherjee S, Harikumar KG, Strutzenberg TS, Zhou XE, Suino-Powell K, Xu TH, Sheldon RD, Lamp J, Brunzelle JS, Radziwon K, Ellis A, Novick SJ, Vega IE, Jones RG, Miller LJ, Xu HE, Griffin PR, Kossiakoff AA, Melcher K. Science 373 413-419 (2021)
  7. AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. Jiménez-Sánchez C, Olivares-Vicente M, Rodríguez-Pérez C, Herranz-López M, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A, Encinar JA, Micol V. PLoS One 12 e0173074 (2017)
  8. Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. Yan Y, Zhou XE, Novick SJ, Shaw SJ, Li Y, Brunzelle JS, Hitoshi Y, Griffin PR, Xu HE, Melcher K. J Biol Chem 294 953-967 (2019)
  9. Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). Gu X, Bridges MD, Yan Y, de Waal PW, Zhou XE, Suino-Powell KM, Xu HE, Hubbell WL, Melcher K. J Biol Chem 293 16994-17007 (2018)
  10. A Way to Increase the Bioaccesibility and Photostability of Roflumilast, a COPD Treatment, by Cyclodextrin Monomers. Matencio A, Hernández-García S, García-Carmona F, López-Nicolás JM. Polymers (Basel) 11 E801 (2019)
  11. Enhancement of α-Mangostin Wound Healing Ability by Complexation with 2-Hydroxypropyl-β-Cyclodextrin in Hydrogel Formulation. Wathoni N, Sari DP, Suharyani I, Motoyama K, Mohammed AFA, Cahyanto A, Abdassah M, Muchtaridi M. Pharmaceuticals (Basel) 13 E290 (2020)
  12. Tumor Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Human Breast Cancer Are Mediated by PD-L1-S283 and Chemokine Axes. Erlichman N, Baram T, Meshel T, Morein D, Da'adoosh B, Ben-Baruch A. Cancers (Basel) 14 1042 (2022)
  13. Optimization of Selectivity and Pharmacokinetic Properties of Salt-Inducible Kinase Inhibitors that Led to the Discovery of Pan-SIK Inhibitor GLPG3312. Temal-Laib T, Peixoto C, Desroy N, De Lemos E, Bonnaterre F, Bienvenu N, Picolet O, Sartori E, Bucher D, López-Ramos M, Roca Magadán C, Laenen W, Flower T, Mollat P, Bugaud O, Touitou R, Pereira Fernandes A, Lavazais S, Monjardet A, Borgonovi M, Gosmini R, Brys R, Amantini D, De Vos S, Andrews M. J Med Chem 67 380-401 (2024)


Reviews citing this publication (29)

  1. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Garcia D, Shaw RJ. Mol Cell 66 789-800 (2017)
  2. AMPK in skeletal muscle function and metabolism. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. FASEB J 32 1741-1777 (2018)
  3. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. Broeckx T, Hulsmans S, Rolland F. J Exp Bot 67 6215-6252 (2016)
  4. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Lee C, Kim KH, Cohen P. Free Radic Biol Med 100 182-187 (2016)
  5. AMPK: restoring metabolic homeostasis over space and time. Trefts E, Shaw RJ. Mol Cell 81 3677-3690 (2021)
  6. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? . Vara-Ciruelos D, Russell FM, Hardie DG. Open Biol 9 190099 (2019)
  7. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. Curry DW, Stutz B, Andrews ZB, Elsworth JD. J Parkinsons Dis 8 161-181 (2018)
  8. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Khan AS, Frigo DE. Nat Rev Urol 14 164-180 (2017)
  9. Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Janzen NR, Whitfield J, Hoffman NJ. Int J Mol Sci 19 E3344 (2018)
  10. New insights into activation and function of the AMPK. Steinberg GR, Hardie DG. Nat Rev Mol Cell Biol 24 255-272 (2023)
  11. Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Cameron KO, Kurumbail RG. Bioorg Med Chem Lett 26 5139-5148 (2016)
  12. The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation. Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. Antioxidants (Basel) 9 E525 (2020)
  13. AMPK signaling and its targeting in cancer progression and treatment. Hsu CC, Peng D, Cai Z, Lin HK. Semin Cancer Biol 85 52-68 (2022)
  14. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Russell FM, Hardie DG. Int J Mol Sci 22 E186 (2020)
  15. An Update on AMPK in Hydrogen Sulfide Pharmacology. Wang M, Tang W, Zhu YZ. Front Pharmacol 8 810 (2017)
  16. Diabetes and dyslipidemia: characterizing lipoprotein metabolism. Tomkin GH, Owens D. Diabetes Metab Syndr Obes 10 333-343 (2017)
  17. Spatial control of AMPK signaling at subcellular compartments. Chauhan AS, Zhuang L, Gan B. Crit Rev Biochem Mol Biol 55 17-32 (2020)
  18. Reciprocal Association between the Apical Junctional Complex and AMPK: A Promising Therapeutic Target for Epithelial/Endothelial Barrier Function? Tsukita K, Yano T, Tamura A, Tsukita S. Int J Mol Sci 20 E6012 (2019)
  19. Enzymes Regulated via Cystathionine β-Synthase Domains. Anashkin VA, Baykov AA, Lahti R. Biochemistry (Mosc) 82 1079-1087 (2017)
  20. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Milanesi R, Coccetti P, Tripodi F. Biomolecules 10 E862 (2020)
  21. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective. Ramesh M, Vepuri SB, Oosthuizen F, Soliman ME. Appl Biochem Biotechnol 178 810-830 (2016)
  22. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics. Long A, Klimova N, Kristian T. Neurochem Int 109 193-201 (2017)
  23. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Kim J, Yang G, Ha J. Expert Opin Drug Discov 12 47-59 (2017)
  24. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase. Li J, Li S, Wang F, Xin F. Chem Biol Drug Des 89 663-669 (2017)
  25. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Pharmaceutics 14 2559 (2022)
  26. Compartmentalization, a key mechanism controlling the multitasking role of the SnRK1 complex. Gutierrez-Beltran E, Crespo JL. J Exp Bot 73 7055-7067 (2022)
  27. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. Front Immunol 14 1114582 (2023)
  28. Sexual Dimorphism in Cardiometabolic Diseases: The Role of AMPK. Kvandova M, Puzserova A, Balis P. Int J Mol Sci 24 11986 (2023)
  29. The Role and Mechanism of Metformin in Inflammatory Diseases. Lin H, Ao H, Guo G, Liu M. J Inflamm Res 16 5545-5564 (2023)

Articles citing this publication (50)

  1. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Ross FA, Jensen TE, Hardie DG. Biochem J 473 189-199 (2016)
  2. Deubiquitination and Activation of AMPK by USP10. Deng M, Yang X, Qin B, Liu T, Zhang H, Guo W, Lee SB, Kim JJ, Yuan J, Pei H, Wang L, Lou Z. Mol Cell 61 614-624 (2016)
  3. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W. Basic Res Cardiol 111 13 (2016)
  4. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Zong Y, Zhang CS, Li M, Wang W, Wang Z, Hawley SA, Ma T, Feng JW, Tian X, Qi Q, Wu YQ, Zhang C, Ye Z, Lin SY, Piao HL, Hardie DG, Lin SC. Cell Res 29 460-473 (2019)
  5. Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development. Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F. Plant Cell 31 1614-1632 (2019)
  6. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Dai S, Dulcey AE, Hu X, Wassif CA, Porter FD, Austin CP, Ory DS, Marugan J, Zheng W. Autophagy 13 1435-1451 (2017)
  7. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Pinkosky SL, Scott JW, Desjardins EM, Smith BK, Day EA, Ford RJ, Langendorf CG, Ling NXY, Nero TL, Loh K, Galic S, Hoque A, Smiles WJ, Ngoei KRW, Parker MW, Yan Y, Melcher K, Kemp BE, Oakhill JS, Steinberg GR. Nat Metab 2 873-881 (2020)
  8. Choreography of AMPK activation. Langendorf CG, Kemp BE. Cell Res 25 5-6 (2015)
  9. Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Ross FA, Hawley SA, Auciello FR, Gowans GJ, Atrih A, Lamont DJ, Hardie DG. Cell Chem Biol 24 813-824.e4 (2017)
  10. Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Rajamohan F, Reyes AR, Frisbie RK, Hoth LR, Sahasrabudhe P, Magyar R, Landro JA, Withka JM, Caspers NL, Calabrese MF, Ward J, Kurumbail RG. Biochem J 473 581-592 (2016)
  11. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R, Stapleton DI, Gooley PR, Neumann D. J Biol Chem 290 11715-11728 (2015)
  12. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Jamsheer K M, Sharma M, Singh D, Mannully CT, Jindal S, Shukla BN, Laxmi A. Plant J 94 232-245 (2018)
  13. AMPK Serves as a Therapeutic Target Against Anemia of Inflammation. Wang M, Xin H, Tang W, Li Y, Zhang Z, Fan L, Miao L, Tan B, Wang X, Zhu YZ. Antioxid Redox Signal 27 251-268 (2017)
  14. DNA-dependent protein kinase regulates lysosomal AMP-dependent protein kinase activation and autophagy. Puustinen P, Keldsbo A, Corcelle-Termeau E, Ngoei K, Sønder SL, Farkas T, Kaae Andersen K, Oakhill JS, Jäättelä M. Autophagy 16 1871-1888 (2020)
  15. Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy. Yamada E, Okada S, Bastie CC, Vatish M, Nakajima Y, Shibusawa R, Ozawa A, Pessin JE, Yamada M. Oncotarget 7 74612-74629 (2016)
  16. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. Nemec MJ, Kim H, Marciante AB, Barnes RC, Hendrick ED, Bisson WH, Talcott ST, Mertens-Talcott SU. J Nutr Biochem 41 12-19 (2017)
  17. Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Mol Cell Endocrinol 504 110703 (2020)
  18. Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Mobbs JI, Koay A, Di Paolo A, Bieri M, Petrie EJ, Gorman MA, Doughty L, Parker MW, Stapleton DI, Griffin MD, Gooley PR. Biochem J 468 245-257 (2015)
  19. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, Liu R, Li Y, Ma B, Li S, Huang G, Ma L, Li X. Front Pharmacol 12 754976 (2021)
  20. Cryo-EM structures of human GMPPA-GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Zheng L, Liu Z, Wang Y, Yang F, Wang J, Huang W, Qin J, Tian M, Cai X, Liu X, Mo X, Gao N, Jia D. Nat Struct Mol Biol 28 1-12 (2021)
  21. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, Smiles WJ, Ling NXY, Dite TA, Scott JW, Oakhill JS, Brink R, Kemp BE, Hawley JA. Mol Metab 41 101048 (2020)
  22. Paradoxical activation of AMPK by glucose drives selective EP300 activity in colorectal cancer. Gutiérrez-Salmerón M, García-Martínez JM, Martínez-Useros J, Fernández-Aceñero MJ, Viollet B, Olivier S, Chauhan J, Lucena SR, De la Vieja A, Goding CR, Chocarro-Calvo A, García-Jiménez C. PLoS Biol 18 e3000732 (2020)
  23. Sex differences in glucoprivic regulation of glycogen metabolism in hypothalamic primary astrocyte cultures: Role of estrogen receptor signaling. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Mol Cell Endocrinol 518 111000 (2020)
  24. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Van Leene J, Eeckhout D, Gadeyne A, Matthijs C, Han C, De Winne N, Persiau G, Van De Slijke E, Persyn F, Mertens T, Smagghe W, Crepin N, Broucke E, Van Damme D, Pleskot R, Rolland F, De Jaeger G. Nat Plants 8 1245-1261 (2022)
  25. Norepinephrine Regulation of Adrenergic Receptor Expression, 5' AMP-Activated Protein Kinase Activity, and Glycogen Metabolism and Mass in Male Versus Female Hypothalamic Primary Astrocyte Cultures. Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. ASN Neuro 12 1759091420974134 (2020)
  26. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress. Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC. Cell Signal 28 1881-1893 (2016)
  27. Expression of recombinant SnRK1 in E. coli. Characterization of adenine nucleotide binding to the SnRK1.1/AKINβγ-β3 complex. Maya-Bernal JL, Ávila A, Ruiz-Gayosso A, Trejo-Fregoso R, Pulido N, Sosa-Peinado A, Zúñiga-Sánchez E, Martínez-Barajas E, Rodríguez-Sotres R, Coello P. Plant Sci 263 116-125 (2017)
  28. Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism. Pelosse M, Cottet-Rousselle C, Bidan CM, Dupont A, Gupta K, Berger I, Schlattner U. Nat Commun 10 1038 (2019)
  29. Identification of Direct Activator of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by Structure-Based Virtual Screening and Molecular Docking Approach. Huang T, Sun J, Zhou S, Gao J, Liu Y. Int J Mol Sci 18 E1408 (2017)
  30. The UBA domain of SnRK1 promotes activation and maintains catalytic activity. Emanuelle S, Doblin MS, Gooley PR, Gentry MS. Biochem Biophys Res Commun 497 127-132 (2018)
  31. AMP-independent activator of AMPK for treatment of mitochondrial disorders. Moore T, Yanes RE, Calton MA, Vollrath D, Enns GM, Cowan TM. PLoS One 15 e0240517 (2020)
  32. Mice with Whole-Body Disruption of AMPK-Glycogen Binding Have Increased Adiposity, Reduced Fat Oxidation and Altered Tissue Glycogen Dynamics. Janzen NR, Whitfield J, Murray-Segal L, Kemp BE, Hawley JA, Hoffman NJ. Int J Mol Sci 22 9616 (2021)
  33. A Highly Sensitive Non-Radioactive Activity Assay for AMP-Activated Protein Kinase (AMPK). Yan Y, Gu X, Xu HE, Melcher K. Methods Protoc 1 3 (2018)
  34. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography. Ouyang Y, Zhu L, Li Y, Guo M, Liu Y, Cheng J, Zhao J, Wu Y. Sci Rep 6 24191 (2016)
  35. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, Ball KA, Webb KJ, Simpson HL, Coleman S, Bunker E, Ramirez A, Reisz JA, Sievers R, Stowell MHB, D'Alessandro A, Liu X, Old WM. Mol Cell Proteomics 21 100262 (2022)
  36. Regulation of energy metabolism during social interactions in rainbow trout: a role for AMP-activated protein kinase. Gilmour KM, Craig PM, Dhillon RS, Lau GY, Richards JG. Am J Physiol Regul Integr Comp Physiol 313 R549-R559 (2017)
  37. Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: a computer-aided drug discovery study. Mofidifar S, Sohraby F, Bagheri M, Aryapour H. Biogerontology 19 133-143 (2018)
  38. Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. Matheson CJ, Casalvieri KA, Backos DS, Minhajuddin M, Jordan CT, Reigan P. Eur J Med Chem 197 112316 (2020)
  39. Unravelling the Carbohydrate-Binding Preferences of the Carbohydrate-Binding Modules of AMP-Activated Protein Kinase. Mobbs JI, Di Paolo A, Metcalfe RD, Selig E, Stapleton DI, Griffin MDW, Gooley PR. Chembiochem 19 229-238 (2018)
  40. AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner. Milanesi R, Tripodi F, Vertemara J, Tisi R, Coccetti P. Int J Mol Sci 22 9483 (2021)
  41. Long-Term Activation of Glucagon-like peptide-1 receptor by Dulaglutide Prevents Diabetic Heart Failure and Metabolic Remodeling in Type 2 Diabetes. Xie S, Zhang M, Shi W, Xing Y, Huang Y, Fang WX, Liu SQ, Chen MY, Zhang T, Chen S, Zeng X, Wang S, Deng W, Tang Q. J Am Heart Assoc 11 e026728 (2022)
  42. Tumor protein D52 (TPD52) affects cancer cell metabolism by negatively regulating AMPK. Chen Y, Peng C, Tan W, Yu J, Zayas J, Peng Y, Lou Z, Pei H, Wang L. Cancer Med 12 488-499 (2023)
  43. β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Drastichova Z, Trubacova R, Novotny J. Cells 11 1473 (2022)
  44. BAY-3827 and SBI-0206965: Potent AMPK Inhibitors That Paradoxically Increase Thr172 Phosphorylation. Hawley SA, Russell FM, Ross FA, Hardie DG. Int J Mol Sci 25 453 (2023)
  45. Comparative analysis of stimulation and binding characteristics of adenosine analogs to AMP-activated protein kinase. Gao F, Qian YJ, Chen FH, Zhu HB. J Asian Nat Prod Res 21 916-927 (2019)
  46. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: network pharmacology and molecular modeling-based investigations. Vadak N, Borkar MR, Bhatt LK. Mol Divers (2024)
  47. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Biochem J 480 1951-1968 (2023)
  48. Metformin ameliorates animal models of dermatitis. Choi SY, Lee C, Heo MJ, Choi YM, An IS, Bae S, An S, Jung JH. Inflammopharmacology 28 1293-1300 (2020)
  49. Robust Identification of Differential Gene Expression Patterns from Multiple Transcriptomics Datasets for Early Diagnosis, Prognosis, and Therapies for Breast Cancer. Tuly KF, Hossen MB, Islam MA, Kibria MK, Alam MS, Harun-Or-Roshid M, Begum AA, Hasan MS, Mahumud RA, Mollah MNH. Medicina (Kaunas) 59 1705 (2023)
  50. S-nitrosylation of AMPKγ impairs coronary collateral circulation and disrupts VSMC reprogramming. Bai W, Guo T, Wang H, Li B, Sun Q, Wu W, Zhang J, Zhou J, Luo J, Zhu M, Lu J, Li P, Dong B, Han S, Pang X, Zhang G, Bai Y, Wang S. EMBO Rep 25 128-143 (2024)