4pjo Citations

Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition.

Elife 4 (2015)
Cited: 110 times
EuropePMC logo PMID: 25555158

Abstract

U1 snRNP binds to the 5' exon-intron junction of pre-mRNA and thus plays a crucial role at an early stage of pre-mRNA splicing. We present two crystal structures of engineered U1 sub-structures, which together reveal at atomic resolution an almost complete network of protein-protein and RNA-protein interactions within U1 snRNP, and show how the 5' splice site of pre-mRNA is recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between pre-mRNA and the 5'-end of U1 snRNA. The binding of the RNA duplex is stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA backbone around the splice junction but U1-C makes no base-specific contacts with pre-mRNA. The structure, together with RNA binding assays, shows that the selection of 5'-splice site nucleotides by U1 snRNP is achieved predominantly through basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched 5'-splice sites.

Reviews - 4pjo mentioned but not cited (2)

  1. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Plaschka C, Newman AJ, Nagai K. Cold Spring Harb Perspect Biol 11 a032391 (2019)
  2. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Andreeva A. Biochem Soc Trans 44 937-943 (2016)

Articles - 4pjo mentioned but not cited (12)

  1. High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells. He C, Sidoli S, Warneford-Thomson R, Tatomer DC, Wilusz JE, Garcia BA, Bonasio R. Mol Cell 64 416-430 (2016)
  2. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. Kondo Y, Oubridge C, van Roon AM, Nagai K. Elife 4 (2015)
  3. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C, Lin PC, Charenton C, Nagai K. Nature 559 419-422 (2018)
  4. Global donor and acceptor splicing site kinetics in human cells. Wachutka L, Caizzi L, Gagneur J, Cramer P. Elife 8 e45056 (2019)
  5. Dynamics and consequences of spliceosome E complex formation. Larson JD, Hoskins AA. Elife 6 e27592 (2017)
  6. Re-refinement of the spliceosomal U4 snRNP core-domain structure. Li J, Leung AK, Kondo Y, Oubridge C, Nagai K. Acta Crystallogr D Struct Biol 72 131-146 (2016)
  7. Dithiothreitol (DTT) Acts as a Specific, UV-inducible Cross-linker in Elucidation of Protein-RNA Interactions. Zaman U, Richter FM, Hofele R, Kramer K, Sachsenberg T, Kohlbacher O, Lenz C, Urlaub H. Mol Cell Proteomics 14 3196-3210 (2015)
  8. Negative cooperativity between Gemin2 and RNA provides insights into RNA selection and the SMN complex's release in snRNP assembly. Yi H, Mu L, Shen C, Kong X, Wang Y, Hou Y, Zhang R. Nucleic Acids Res 48 895-911 (2020)
  9. Engineering Crystal Packing in RNA-Protein Complexes II: A Historical Perspective from the Structural Studies of the Spliceosome. Leung AK, Kondo Y, Krummel DAP, Li J, Price SR, van Roon AM. Crystals (Basel) 11 948 (2021)
  10. Human PRPF39 is an alternative splicing factor recruiting U1 snRNP to weak 5' splice sites. Espinosa S, De Bortoli F, Li X, Rossi J, Wagley ME, Lo HG, Taliaferro JM, Zhao R. RNA rna.079320.122 (2022)
  11. Phylogenetic Comparison and Splicing Analysis of the U1 snRNP-specific Protein U1C in Eukaryotes. Zhang KL, Zhou JL, Yang JF, Zhao YZ, Das D, Hao GF, Wu C, Zhang J, Zhu FY, Chen MX, Zhou SM. Front Mol Biosci 8 696319 (2021)
  12. Sample Preparation for Mass Spectrometry-based Identification of RNA-binding Regions. Warneford-Thomson R, He C, Sidoli S, Garcia BA, Bonasio R. J Vis Exp (2017)


Reviews citing this publication (26)

  1. Specificity and nonspecificity in RNA-protein interactions. Jankowsky E, Harris ME. Nat Rev Mol Cell Biol 16 533-544 (2015)
  2. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat Struct Mol Biol 24 791-799 (2017)
  3. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 a032409 (2019)
  4. Small molecule recognition of disease-relevant RNA structures. Meyer SM, Williams CC, Akahori Y, Tanaka T, Tanaka T, Aikawa H, Tong Y, Childs-Disney JL, Disney MD. Chem Soc Rev 49 7167-7199 (2020)
  5. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Jenkins JL, Kielkopf CL. Trends Genet 33 336-348 (2017)
  6. Spliceosomal snRNA Epitranscriptomics. Morais P, Adachi H, Yu YT. Front Genet 12 652129 (2021)
  7. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  8. A novel role of U1 snRNP: Splice site selection from a distance. Singh RN, Singh NN. Biochim Biophys Acta Gene Regul Mech 1862 634-642 (2019)
  9. The nuts and bolts of the endogenous spliceosome. Sperling R. Wiley Interdiscip Rev RNA 8 (2017)
  10. A Challenging Pie to Splice: Drugging the Spliceosome. León B, Kashyap MK, Chan WC, Krug KA, Castro JE, La Clair JJ, Burkart MD. Angew Chem Int Ed Engl 56 12052-12063 (2017)
  11. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Van Roey K, Davey NE. Cell Commun Signal 13 45 (2015)
  12. Prp40 and early events in splice site definition. Becerra S, Andrés-León E, Prieto-Sánchez S, Hernández-Munain C, Suñé C. Wiley Interdiscip Rev RNA 7 17-32 (2016)
  13. ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. Yang X, Jia Z, Pu Q, Tian Y, Zhu F, Liu Y. Int J Mol Sci 23 3796 (2022)
  14. Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Blijlevens M, Li J, van Beusechem VW. Int J Mol Sci 22 5110 (2021)
  15. The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease. Aísa-Marín I, García-Arroyo R, Mirra S, Marfany G. Int J Mol Sci 22 1855 (2021)
  16. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Willbanks A, Wood S, Cheng JX. Genes (Basel) 12 627 (2021)
  17. What's Wrong in a Jump? Prediction and Validation of Splice Site Variants. Riolo G, Cantara S, Ricci C. Methods Protoc 4 62 (2021)
  18. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds. Fujita KI, Ishizuka T, Mitsukawa M, Kurata M, Masuda S. Int J Mol Sci 21 E2026 (2020)
  19. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing. Catania F, Schmitz J. Wiley Interdiscip Rev RNA 6 547-561 (2015)
  20. U1 snRNP telescripting: molecular mechanisms and beyond. Ran Y, Deng Y, Yao C. RNA Biol 18 1512-1523 (2021)
  21. Principles and correction of 5'-splice site selection. Malard F, Mackereth CD, Campagne S. RNA Biol 19 943-960 (2022)
  22. Recurrent Spliceosome Mutations in Cancer: Mechanisms and Consequences of Aberrant Splice Site Selection. Niño CA, Scotto di Perrotolo R, Polo S. Cancers (Basel) 14 281 (2022)
  23. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Borao S, Ayté J, Hümmer S. Int J Mol Sci 22 12444 (2021)
  24. Development of Engineered-U1 snRNA Therapies: Current Status. Gonçalves M, Santos JI, Coutinho MF, Matos L, Alves S. Int J Mol Sci 24 14617 (2023)
  25. Early Splicing Complexes and Human Disease. Nagasawa CK, Garcia-Blanco MA. Int J Mol Sci 24 11412 (2023)
  26. Phosphorylation mediated regulation of RNA splicing in plants. Rodriguez Gallo MC, Uhrig RG. Front Plant Sci 14 1249057 (2023)

Articles citing this publication (70)

  1. Structure of a yeast spliceosome at 3.6-angstrom resolution. Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y. Science 349 1182-1191 (2015)
  2. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG, Beibel M, Renaud NA, Smith TM, Salcius M, Shi X, Hild M, Servais R, Jain M, Deng L, Bullock C, McLellan M, Schuierer S, Murphy L, Blommers MJ, Blaustein C, Berenshteyn F, Lacoste A, Thomas JR, Roma G, Michaud GA, Tseng BS, Porter JA, Myer VE, Tallarico JA, Hamann LG, Curtis D, Fishman MC, Dietrich WF, Dales NA, Sivasankaran R. Nat Chem Biol 11 511-517 (2015)
  3. Detection of RNA-Protein Interactions in Living Cells with SHAPE. Smola MJ, Calabrese JM, Weeks KM. Biochemistry 54 6867-6875 (2015)
  4. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Tomezsko PJ, Corbin VDA, Gupta P, Swaminathan H, Glasgow M, Persad S, Edwards MD, Mcintosh L, Papenfuss AT, Emery A, Swanstrom R, Zang T, Lan TCT, Bieniasz P, Kuritzkes DR, Tsibris A, Rouskin S. Nature 582 438-442 (2020)
  5. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Zhu FY, Chen MX, Ye NH, Shi L, Ma KL, Yang JF, Cao YY, Zhang Y, Yoshida T, Fernie AR, Fan GY, Wen B, Zhou R, Liu TY, Fan T, Gao B, Zhang D, Hao GF, Xiao S, Liu YG, Zhang J. Plant J 91 518-533 (2017)
  6. Mechanism of 5' splice site transfer for human spliceosome activation. Charenton C, Wilkinson ME, Nagai K. Science 364 362-367 (2019)
  7. A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. So BR, Wan L, Zhang Z, Li P, Babiash E, Duan J, Younis I, Dreyfuss G. Nat Struct Mol Biol 23 225-230 (2016)
  8. Therapeutic activity of modified U1 core spliceosomal particles. Rogalska ME, Tajnik M, Licastro D, Bussani E, Camparini L, Mattioli C, Pagani F. Nat Commun 7 11168 (2016)
  9. Structure of an active human histone pre-mRNA 3'-end processing machinery. Sun Y, Zhang Y, Aik WS, Yang XC, Marzluff WF, Walz T, Dominski Z, Tong L. Science 367 700-703 (2020)
  10. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Bai R, Wan R, Yan C, Lei J, Shi Y. Science 360 1423-1429 (2018)
  11. RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease. Bishof I, Dammer EB, Duong DM, Kundinger SR, Gearing M, Lah JJ, Levey AI, Seyfried NT. J Biol Chem 293 11047-11066 (2018)
  12. Alternative splicing and translation play important roles in hypoxic germination in rice. Chen MX, Zhu FY, Wang FZ, Ye NH, Gao B, Chen X, Zhao SS, Fan T, Cao YY, Liu TY, Su ZZ, Xie LJ, Hu QJ, Wu HJ, Xiao S, Zhang J, Liu YG. J Exp Bot 70 817-833 (2019)
  13. Analysis of RNA-protein networks with RNP-MaP defines functional hubs on RNA. Weidmann CA, Mustoe AM, Jariwala PB, Calabrese JM, Weeks KM. Nat Biotechnol 39 347-356 (2021)
  14. CryoEM structure of Saccharomyces cerevisiae U1 snRNP offers insight into alternative splicing. Li X, Liu S, Jiang J, Zhang L, Espinosa S, Hill RC, Hansen KC, Zhou ZH, Zhao R. Nat Commun 8 1035 (2017)
  15. Targeting the Oncogenic Long Non-coding RNA SLNCR1 by Blocking Its Sequence-Specific Binding to the Androgen Receptor. Schmidt K, Weidmann CA, Hilimire TA, Yee E, Hatfield BM, Schneekloth JS, Weeks KM, Novina CD. Cell Rep 30 541-554.e5 (2020)
  16. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, Chen L, Eperon LP, Hodson MJ, Hudson AJ, Allain FHT, Eperon IC. EMBO J 41 e107640 (2022)
  17. Comprehensive database and evolutionary dynamics of U12-type introns. Moyer DC, Larue GE, Hershberger CE, Roy SW, Padgett RA. Nucleic Acids Res 48 7066-7078 (2020)
  18. The U1 snRNP Subunit LUC7 Modulates Plant Development and Stress Responses via Regulation of Alternative Splicing. de Francisco Amorim M, Willing EM, Szabo EX, Francisco-Mangilet AG, Droste-Borel I, Maček B, Schneeberger K, Laubinger S. Plant Cell 30 2838-2854 (2018)
  19. Structural basis for the recognition of spliceosomal SmN/B/B' proteins by the RBM5 OCRE domain in splicing regulation. Mourão A, Bonnal S, Soni K, Warner L, Bordonné R, Valcárcel J, Sattler M. Elife 5 e14707 (2016)
  20. Structure-function analysis and genetic interactions of the Yhc1, SmD3, SmB, and Snp1 subunits of yeast U1 snRNP and genetic interactions of SmD3 with U2 snRNP subunit Lea1. Schwer B, Shuman S. RNA 21 1173-1186 (2015)
  21. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Liu Z, Liu Q, Yang X, Zhang Y, Norris M, Chen X, Cheema J, Zhang H, Ding Y. Genome Biol 22 11 (2021)
  22. Heterogeneous Nuclear Ribonucleoprotein H1 Coordinates with Phytochrome and the U1 snRNP Complex to Regulate Alternative Splicing in Physcomitrella patens. Shih CJ, Chen HW, Hsieh HY, Lai YH, Chiu FY, Chen YR, Tu SL. Plant Cell 31 2510-2524 (2019)
  23. Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays. Erkelenz S, Theiss S, Kaisers W, Ptok J, Walotka L, Müller L, Hillebrand F, Brillen AL, Sladek M, Schaal H. Genome Res 28 1826-1840 (2018)
  24. Structure-function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP. Agarwal R, Schwer B, Shuman S. RNA 22 1302-1310 (2016)
  25. Competition between maturation and degradation drives human snRNA 3' end quality control. Lardelli RM, Lykke-Andersen J. Genes Dev 34 989-1001 (2020)
  26. Composition and processing activity of a semi-recombinant holo U7 snRNP. Bucholc K, Aik WS, Yang XC, Wang K, Zhou ZH, Dadlez M, Marzluff WF, Tong L, Dominski Z. Nucleic Acids Res 48 1508-1530 (2020)
  27. tRIP-seq reveals repression of premature polyadenylation by co-transcriptional FUS-U1 snRNP assembly. Masuda A, Kawachi T, Takeda JI, Ohkawara B, Ito M, Ohno K. EMBO Rep 21 e49890 (2020)
  28. Allosteric regulation of U1 snRNP by splicing regulatory proteins controls spliceosomal assembly. Shenasa H, Movassat M, Forouzmand E, Hertel KJ. RNA 26 1389-1399 (2020)
  29. Alternative splicing is a Sorghum bicolor defense response to fungal infection. Wang L, Chen M, Zhu F, Fan T, Zhang J, Lo C. Planta 251 14 (2019)
  30. The Exon Junction Complex and intron removal prevent re-splicing of mRNA. Joseph B, Lai EC. PLoS Genet 17 e1009563 (2021)
  31. An in vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Campagne S, de Vries T, Malard F, Afanasyev P, Dorn G, Dedic E, Kohlbrecher J, Boehringer D, Cléry A, Allain FH. Nucleic Acids Res 49 e63 (2021)
  32. Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export. Duan L, Zaepfel BL, Aksenova V, Dasso M, Rothstein JD, Kalab P, Hayes LR. Cell Rep 40 111106 (2022)
  33. Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring. Schwer B, Kruchten J, Shuman S. RNA 22 1320-1328 (2016)
  34. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. RNA Biol 18 2576-2593 (2021)
  35. Human spliceosomal snRNA sequence variants generate variant spliceosomes. Mabin JW, Lewis PW, Brow DA, Dvinge H. RNA 27 1186-1203 (2021)
  36. Transposon clusters as substrates for aberrant splice-site activation. Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. RNA Biol 18 354-367 (2021)
  37. Two Routes to Genetic Suppression of RNA Trimethylguanosine Cap Deficiency via C-Terminal Truncation of U1 snRNP Subunit Snp1 or Overexpression of RNA Polymerase Subunit Rpo26. Qiu ZR, Schwer B, Shuman S. G3 (Bethesda) 5 1361-1370 (2015)
  38. Alzheimer's disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment. Chen PC, Han X, Shaw TI, Fu Y, Sun H, Niu M, Wang Z, Jiao Y, Teubner BJW, Eddins D, Beloate LN, Bai B, Mertz J, Li Y, Cho JH, Wang X, Wu Z, Liu D, Poudel S, Yuan ZF, Mancieri A, Low J, Lee HM, Patton MH, Earls LR, Stewart E, Vogel P, Hui Y, Wan S, Bennett DA, Serrano GE, Beach TG, Dyer MA, Smeyne RJ, Moldoveanu T, Chen T, Wu G, Zakharenko SS, Yu G, Peng J. Nat Aging 2 923-940 (2022)
  39. CLK1 reorganizes the splicing factor U1-70K for early spliceosomal protein assembly. Aubol BE, Wozniak JM, Fattet L, Gonzalez DJ, Adams JA. Proc Natl Acad Sci U S A 118 e2018251118 (2021)
  40. Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. Pujari N, Saundh SL, Acquah FA, Mooers BHM, Ferré-D'Amaré AR, Leung AK. Crystals (Basel) 11 952 (2021)
  41. Suboptimal RNA-RNA interaction limits U1 snRNP inhibition of canonical mRNA 3' processing. Shi J, Deng Y, Huang S, Huang C, Wang J, Xiang AP, Yao C. RNA Biol 16 1448-1460 (2019)
  42. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. Nat Commun 12 1488 (2021)
  43. Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Saha K, Fernandez MM, Biswas T, Joseph S, Ghosh G. Nucleic Acids Res 49 7103-7121 (2021)
  44. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. RNA Biol 16 1364-1376 (2019)
  45. Higher-order epistasis and phenotypic prediction. Zhou J, Wong MS, Chen WC, Krainer AR, Kinney JB, McCandlish DM. Proc Natl Acad Sci U S A 119 e2204233119 (2022)
  46. Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2. Schwer B, Roth AJ, Shuman S. RNA 23 420-430 (2017)
  47. Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. Roth AJ, Shuman S, Schwer B. RNA 24 853-864 (2018)
  48. Molecular principles underlying dual RNA specificity in the Drosophila SNF protein. Weber G, DeKoster GT, Holton N, Hall KB, Wahl MC. Nat Commun 9 2220 (2018)
  49. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing. Ajiro M, Zheng ZM. Cell Biosci 5 70 (2015)
  50. Cooperative engagement and subsequent selective displacement of SR proteins define the pre-mRNA 3D structural scaffold for early spliceosome assembly. Saha K, Ghosh G. Nucleic Acids Res 50 8262-8278 (2022)
  51. Domain function and predicted structure of three heterodimeric endonuclease subunits of RNA editing catalytic complexes in Trypanosoma brucei. Carnes J, McDermott SM, Lewis I, Tracy M, Stuart K. Nucleic Acids Res 50 10123-10139 (2022)
  52. Reversibly constraining spliceosome-substrate complexes by engineering disulfide crosslinks. McCarthy P, Garside E, Meschede-Krasa Y, MacMillan A, Pomeranz Krummel D. Methods 125 25-35 (2017)
  53. Structure and Sequence Determinants Governing the Interactions of RNAs with Influenza A Virus Non-Structural Protein NS1. Wacquiez A, Coste F, Kut E, Gaudon V, Trapp S, Castaing B, Marc D. Viruses 12 E947 (2020)
  54. Activation of the intronic cryptic 5' splice site depends on its distance to the upstream cassette exon. Liu W, Li X, Liao S, Dou K, Zhang Y. Gene 619 30-36 (2017)
  55. An intimate view of a spliceosome component. Nilsen TW. Elife 4 e06200 (2015)
  56. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes. Strange RM, Russelburg LP, Delaney KJ. Genetica 144 487-496 (2016)
  57. Multi-step recognition of potential 5' splice sites by the Saccharomyces cerevisiae U1 snRNP. Hansen SR, White DS, Scalf M, Corrêa IR, Smith LM, Hoskins AA. Elife 11 e70534 (2022)
  58. A new communication hub in the RNA world. Mayerle M, Guthrie C. Nat Struct Mol Biol 23 189-190 (2016)
  59. Advances in chaperone-assisted RNA crystallography using synthetic antibodies. Banna HA, Das NK, Ojha M, Koirala D. BBA Adv 4 100101 (2023)
  60. Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome. de Macêdo Mendes C, Teixeira DG, Lima JPMS, Lanza DCF. BMC Struct Biol 19 8 (2019)
  61. Comprehensive analysis of alternative polyadenylation regulators of CTLA4 and immune infiltration in clear cell renal cell carcinoma. Zhou M, Long W, Xiong M, Zhang F, Chen L, Chen J, Pang Z, Hou T, Li W. Transl Androl Urol 12 533-548 (2023)
  62. Conserved and divergent signals in 5' splice site sequences across fungi, metazoa and plants. Beckel MS, Kaufman B, Yanovsky M, Chernomoretz A. PLoS Comput Biol 19 e1011540 (2023)
  63. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. Life Sci Alliance 6 e202201593 (2023)
  64. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells. Jiang L, Xie X, Su N, Zhang D, Chen X, Xu X, Zhang B, Huang K, Yu J, Fang M, Bao B, Zuo F, Yang L, Zhang R, Li H, Huang X, Chen Z, Zeng Q, Liu R, Lin Q, Zhao Y, Ren A, Zhu L, Yang Y. Nat Methods 20 1563-1572 (2023)
  65. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites. Flemr M, Schwaiger M, Hess D, Iesmantavicius V, Ahel J, Tuck AC, Mohn F, Bühler M. RNA 29 1140-1165 (2023)
  66. Phylogenetic analysis and stress response of the plant U2 small nuclear ribonucleoprotein B″ gene family. Gao C, Lu S, Zhou R, Ding J, Fan J, Han B, Chen M, Wang B, Cao Y. BMC Genomics 23 744 (2022)
  67. Spliceosomal SL1 RNA binding to U1-70K: the role of the extended RRM. Gopan G, Ghaemi Z, Davis CM, Gruebele M. Nucleic Acids Res 50 8193-8206 (2022)
  68. Splicing efficiency of minor introns in a mouse model of SMA predominantly depends on their branchpoint sequence and can involve the contribution of major spliceosome components. Jacquier V, Prévot M, Gostan T, Bordonné R, Benkhelifa-Ziyyat S, Barkats M, Soret J. RNA 28 303-319 (2022)
  69. Splicing regulation of GFPT1 muscle-specific isoform and its roles in glucose metabolisms and neuromuscular junction. Farshadyeganeh P, Nazim M, Zhang R, Ohkawara B, Nakajima K, Rahman MA, Nasrin F, Ito M, Takeda JI, Ohe K, Miyasaka Y, Ohno T, Masuda A, Ohno K. iScience 26 107746 (2023)
  70. The U1 antisense morpholino oligonucleotide (AMO) disrupts U1 snRNP structure to promote intronic PCPA modification of pre-mRNAs. Feng Q, Lin Z, Deng Y, Ran Y, Yu R, Xiang AP, Ye C, Yao C. J Biol Chem 299 104854 (2023)