4nk8 Citations

Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG.

J Biol Chem 289 6006-19 (2014)
Cited: 21 times
EuropePMC logo PMID: 24398681

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that forms chronic biofilm infections in the lungs of cystic fibrosis patients. A major component of the biofilm during these infections is the exopolysaccharide alginate, which is synthesized at the inner membrane as a homopolymer of 1-4-linked β-D-mannuronate. As the polymer passages through the periplasm, 22-44% of the mannuronate residues are converted to α-L-guluronate by the C5-epimerase AlgG to produce a polymer of alternating β-D-mannuronate and α-L-guluronate blocks and stretches of polymannuronate. To understand the molecular basis of alginate epimerization, the structure of Pseudomonas syringae AlgG has been determined at 2.1-Å resolution, and the protein was functionally characterized. The structure reveals that AlgG is a long right-handed parallel β-helix with an elaborate lid structure. Functional analysis of AlgG mutants suggests that His(319) acts as the catalytic base and that Arg(345) neutralizes the acidic group during the epimerase reaction. Water is the likely catalytic acid. Electrostatic surface potential and residue conservation analyses in conjunction with activity and substrate docking studies suggest that a conserved electropositive groove facilitates polymannuronate binding and contains at least nine substrate binding subsites. These subsites likely align the polymer in the correct register for catalysis to occur. The presence of multiple subsites, the electropositive groove, and the non-random distribution of guluronate in the alginate polymer suggest that AlgG is a processive enzyme. Moreover, comparison of AlgG and the extracellular alginate epimerase AlgE4 of Azotobacter vinelandii provides a structural rationale for the differences in their Ca(2+) dependence.

Articles - 4nk8 mentioned but not cited (2)

  1. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG. Wolfram F, Kitova EN, Robinson H, Walvoort MT, Codée JD, Klassen JS, Howell PL. J. Biol. Chem. 289 6006-6019 (2014)
  2. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, Boonsawat P, Bruel AL, Buchert R, Calpena E, Cogné B, Dallapiccola B, Distelmaier F, Elmslie F, Faivre L, Haack TB, Harrison V, Henderson A, Hunt D, Isidor B, Joset P, Kumada S, Lachmeijer AMA, Lees M, Lynch SA, Martinez F, Matsumoto N, McDougall C, Mefford HC, Miyake N, Myers CT, Moutton S, Nesbitt A, Novelli A, Orellana C, Rauch A, Rosello M, Saida K, Santani AB, Sarkar A, Scheffer IE, Shinawi M, Steindl K, Symonds JD, Zackai EH, University of Washington Center for Mendelian Genomics, DDD Study, Reis A, Sticht H, Zweier C. Am. J. Hum. Genet. 103 305-316 (2018)


Reviews citing this publication (5)

  1. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Whitfield GB, Marmont LS, Howell PL. Front Microbiol 6 471 (2015)
  2. Alginate-modifying enzymes: biological roles and biotechnological uses. Ertesvåg H. Front Microbiol 6 523 (2015)
  3. A new era for understanding amyloid structures and disease. Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. Nat. Rev. Mol. Cell Biol. 19 755-773 (2018)
  4. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. FEMS Microbiol Rev 47 fuad060 (2023)
  5. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. NPJ Biofilms Microbiomes 9 63 (2023)

Articles citing this publication (14)

  1. Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa. Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH. MBio 6 e00453-15 (2015)
  2. The cell-wall active mannuronan C5-epimerases in the model brown alga Ectocarpus: From gene context to recombinant protein. Fischl R, Bertelsen K, Gaillard F, Coelho S, Michel G, Klinger M, Boyen C, Czjzek M, Hervé C. Glycobiology 26 973-983 (2016)
  3. Acceptor reactivity in the total synthesis of alginate fragments containing α-L-guluronic acid and β-D-mannuronic acid. Zhang Q, van Rijssel ER, Walvoort MT, Overkleeft HS, van der Marel GA, Codée JD. Angew. Chem. Int. Ed. Engl. 54 7670-7673 (2015)
  4. Biological function of a polysaccharide degrading enzyme in the periplasm. Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BH. Sci Rep 6 31249 (2016)
  5. Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, Howell PL. Nat Commun 13 7631 (2022)
  6. The Pseudomonas aeruginosa homeostasis enzyme AlgL clears the periplasmic space of accumulated alginate during polymer biosynthesis. Gheorghita AA, Wolfram F, Whitfield GB, Jacobs HM, Pfoh R, Wong SSY, Guitor AK, Goodyear MC, Berezuk AM, Khursigara CM, Parsek MR, Howell PL. J Biol Chem 298 101560 (2022)
  7. Characterization and Mechanism Study of a Novel PL7 Family Exolytic Alginate Lyase from Marine Bacteria Vibrio sp. W13. Xiao Z, Li K, Li T, Zhang F, Xue J, Zhao M, Yin H. Appl Biochem Biotechnol (2023)
  8. Computational modeling of the molecular basis for the calcium-dependence of the mannuronan C-5 epimerase AvAlgE6 from Azotobacter vinelandii. Gaardløs M, Lervik A, Samsonov SA. Comput Struct Biotechnol J 21 2188-2196 (2023)
  9. De novo missense variants in FBXO11 alter its protein expression and subcellular localization. Gregor A, Meerbrei T, Gerstner T, Toutain A, Lynch SA, Stals K, Maxton C, Lemke JR, Bernat JA, Bombei HM, Foulds N, Hunt D, Kuechler A, Beygo J, Stöbe P, Bouman A, Palomares-Bralo M, Santos-Simarro F, Garcia-Minaur S, Pacio-Miguez M, Popp B, Vasileiou G, Hebebrand M, Reis A, Schuhmann S, Krumbiegel M, Brown NJ, Sparber P, Melikyan L, Bessonova L, Cherevatova T, Sharkov A, Shcherbakova N, Dabir T, Kini U, Schwaibold EMC, Haack TB, Bertoli M, Hoffjan S, Falb R, Shinawi M, Sticht H, Zweier C. Hum Mol Genet 31 440-454 (2022)
  10. Genetic, structural and pharmacological characterization of polymannuronate synthesized by algG mutant indigenous soil bacterium Pseudomonas aeruginosa CMG1421. Muhammadi, Shafiq S. J. Appl. Microbiol. 126 113-126 (2019)
  11. Immobilization of planktonic algal spores by inkjet printing. Lee HR, Jung SM, Yoon S, Yoon WH, Park TH, Kim S, Shin HW, Hwang DS, Jung S. Sci Rep 9 12357 (2019)
  12. Mechanistic Basis for Understanding the Dual Activities of the Bifunctional Azotobacter vinelandii Mannuronan C-5-Epimerase and Alginate Lyase AlgE7. Gaardløs M, Heggeset TMB, Tøndervik A, Tezé D, Svensson B, Ertesvåg H, Sletta H, Aachmann FL. Appl Environ Microbiol 88 e0183621 (2022)
  13. Sequence diversity of the Pseudomonas aeruginosa population in loci that undergo microevolution in cystic fibrosis airways. Fischer S, Klockgether J, Gonzalez Sorribes M, Dorda M, Wiehlmann L, Tümmler B. Access Microbiol 3 000286 (2021)
  14. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. J. Biol. Chem. 294 17915-17930 (2019)