4ncy Citations

Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes.

Abstract

Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.

Articles - 4ncy mentioned but not cited (2)

  1. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes. Yin X, Scalia A, Leroy L, Cuttitta CM, Polizzo GM, Ericson DL, Roessler CG, Campos O, Ma MY, Agarwal R, Jackimowicz R, Allaire M, Orville AM, Sweet RM, Soares AS. Acta Crystallogr D Biol Crystallogr 70 1177-1189 (2014)
  2. Using sound pulses to solve the crystal-harvesting bottleneck. Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Acta Crystallogr D Struct Biol 74 986-999 (2018)


Articles citing this publication (17)

  1. Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Roessler CG, Agarwal R, Allaire M, Alonso-Mori R, Andi B, Bachega JFR, Bommer M, Brewster AS, Browne MC, Chatterjee R, Cho E, Cohen AE, Cowan M, Datwani S, Davidson VL, Defever J, Eaton B, Ellson R, Feng Y, Ghislain LP, Glownia JM, Han G, Hattne J, Hellmich J, Héroux A, Ibrahim M, Kern J, Kuczewski A, Lemke HT, Liu P, Majlof L, McClintock WM, Myers S, Nelsen S, Olechno J, Orville AM, Sauter NK, Soares AS, Soltis SM, Song H, Stearns RG, Tran R, Tsai Y, Uervirojnangkoorn M, Wilmot CM, Yachandra V, Yano J, Yukl ET, Zhu D, Zouni A. Structure 24 631-640 (2016)
  2. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, Meents A. IUCrJ 6 714-728 (2019)
  3. Miniaturization and optimization of 384-well compatible RNA sequencing library preparation. Mayday MY, Khan LM, Chow ED, Zinter MS, DeRisi JL. PLoS One 14 e0206194 (2019)
  4. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Tsujino S, Tomizaki T. Sci Rep 6 25558 (2016)
  5. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. Teplitsky E, Joshi K, Ericson DL, Scalia A, Mullen JD, Sweet RM, Soares AS. J Struct Biol 191 49-58 (2015)
  6. Rapid approach to complex boronic acids. Neochoritis CG, Shaabani S, Ahmadianmoghaddam M, Zarganes-Tzitzikas T, Gao L, Novotná M, Mitríková T, Romero AR, Irianti MI, Xu R, Olechno J, Ellson R, Helan V, Kossenjans M, Groves MR, Dömling A. Sci Adv 5 eaaw4607 (2019)
  7. Uridine as a new scavenger for synchrotron-based structural biology techniques. Crosas E, Castellvi A, Crespo I, Fulla D, Gil-Ortiz F, Fuertes G, Kamma-Lorger CS, Malfois M, Aranda MA, Juanhuix J. J Synchrotron Radiat 24 53-62 (2017)
  8. Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. Wienen-Schmidt B, Oebbeke M, Ngo K, Heine A, Klebe G. ChemMedChem 16 292-300 (2021)
  9. Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology. Gorrec F, Löwe J. J Vis Exp (2018)
  10. Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Kidd SL, Fowler E, Reinhardt T, Compton T, Mateu N, Newman H, Bellini D, Talon R, McLoughlin J, Krojer T, Aimon A, Bradley A, Fairhead M, Brear P, Díaz-Sáez L, McAuley K, Sore HF, Madin A, O'Donovan DH, Huber KVM, Hyvönen M, von Delft F, Dowson CG, Spring DR. Chem Sci 11 10792-10801 (2020)
  11. Developments in the Implementation of Acoustic Droplet Ejection for Protein Crystallography. Wu P, Noland C, Ultsch M, Edwards B, Harris D, Mayer R, Harris SF. J Lab Autom 21 97-106 (2016)
  12. FragMAXapp: crystallographic fragment-screening data-analysis and project-management system. Lima GMA, Jagudin E, Talibov VO, Benz LS, Marullo C, Barthel T, Wollenhaupt J, Weiss MS, Mueller U. Acta Crystallogr D Struct Biol 77 799-808 (2021)
  13. Editorial What's happened over the last five years with high-throughput protein crystallization screening? Lin Y. Expert Opin Drug Discov 13 691-695 (2018)
  14. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. Ericson DL, Yin X, Scalia A, Samara YN, Stearns R, Vlahos H, Ellson R, Sweet RM, Soares AS. J Lab Autom 21 107-114 (2016)
  15. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. Sui S, Mulichak A, Kulathila R, McGee J, Filiatreault D, Saha S, Cohen A, Song J, Hung H, Selway J, Kirby C, Shrestha OK, Weihofen W, Fodor M, Xu M, Chopra R, Perry SL. J Appl Crystallogr 54 1034-1046 (2021)
  16. Maintaining Microclimates during Nanoliter Chemical Dispensations Using Custom-Designed Source Plate Lids. Foley BJ, Drozd AM, Bollard MT, Laspina D, Podobedov N, Zeniou N, Rao AS, Andi B, Jackimowicz R, Sweet RM, McSweeney S, Soares AS. J Lab Autom 21 115-124 (2016)
  17. Serial crystallography with multi-stage merging of thousands of images. Soares AS, Yamada Y, Jakoncic J, McSweeney S, Sweet RM, Skinner J, Foadi J, Fuchs MR, Schneider DK, Shi W, Andi B, Andrews LC, Bernstein HJ. Acta Crystallogr F Struct Biol Commun 78 281-288 (2022)