4n3a Citations

HCF-1 is cleaved in the active site of O-GlcNAc transferase.

Science 342 1235-9 (2013)
Related entries: 4n39, 4n3b, 4n3c

Cited: 110 times
EuropePMC logo PMID: 24311690

Abstract

Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.

Reviews - 4n3a mentioned but not cited (1)

Articles - 4n3a mentioned but not cited (4)

  1. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TM, Texier Y, van Beersum SE, Horn N, Willer JR, Mans DA, Dougherty G, Lamers IJ, Coene KL, Arts HH, Betts MJ, Beyer T, Bolat E, Gloeckner CJ, Haidari K, Hetterschijt L, Iaconis D, Jenkins D, Klose F, Knapp B, Latour B, Letteboer SJ, Marcelis CL, Mitic D, Morleo M, Oud MM, Riemersma M, Rix S, Terhal PA, Toedt G, van Dam TJ, de Vrieze E, Wissinger Y, Wu KM, Apic G, Beales PL, Blacque OE, Gibson TJ, Huynen MA, Katsanis N, Kremer H, Omran H, van Wijk E, Wolfrum U, Kepes F, Davis EE, Franco B, Giles RH, Ueffing M, Russell RB, Russell RB, Roepman R, UK10K Rare Diseases Group. Nat Commun 7 11491 (2016)
  2. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S. Science 342 1235-1239 (2013)
  3. Discovery of a Low Toxicity O-GlcNAc Transferase (OGT) Inhibitor by Structure-based Virtual Screening of Natural Products. Liu Y, Ren Y, Cao Y, Huang H, Wu Q, Li W, Wu S, Zhang J. Sci Rep 7 12334 (2017)
  4. The conserved threonine-rich region of the HCF-1PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. Kapuria V, Röhrig UF, Waridel P, Lammers F, Borodkin VS, van Aalten DMF, Zoete V, Herr W. J Biol Chem 293 17754-17768 (2018)


Reviews citing this publication (35)

  1. Protein O-GlcNAcylation: emerging mechanisms and functions. Yang X, Qian K. Nat Rev Mol Cell Biol 18 452-465 (2017)
  2. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Hardivillé S, Hart GW. Cell Metab 20 208-213 (2014)
  3. Nutrient regulation of signaling and transcription. Hart GW. J Biol Chem 294 2211-2231 (2019)
  4. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Yuzwa SA, Vocadlo DJ. Chem Soc Rev 43 6839-6858 (2014)
  5. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Levine ZG, Walker S. Annu Rev Biochem 85 631-657 (2016)
  6. O-GlcNAc and the epigenetic regulation of gene expression. Lewis BA, Hanover JA. J Biol Chem 289 34440-34448 (2014)
  7. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Chatham JC, Zhang J, Wende AR. Physiol Rev 101 427-493 (2021)
  8. O-GlcNAc signaling in cancer metabolism and epigenetics. Singh JP, Zhang K, Wu J, Yang X. Cancer Lett 356 244-250 (2015)
  9. Advances in understanding glycosyltransferases from a structural perspective. Gloster TM. Curr Opin Struct Biol 28 131-141 (2014)
  10. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. van der Laarse SAM, Leney AC, Heck AJR. FEBS J 285 3152-3167 (2018)
  11. O-GlcNAcylation and its role in the immune system. Chang YH, Weng CL, Lin KI. J Biomed Sci 27 57 (2020)
  12. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity. Nagel AK, Ball LE. Amino Acids 46 2305-2316 (2014)
  13. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. J Neurochem 144 7-34 (2018)
  14. The making of a sweet modification: structure and function of O-GlcNAc transferase. Janetzko J, Walker S. J Biol Chem 289 34424-34432 (2014)
  15. Amide Bond Activation of Biological Molecules. Mahesh S, Tang KC, Raj M. Molecules 23 E2615 (2018)
  16. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Gambetta MC, Müller J. Chromosoma 124 429-442 (2015)
  17. Synthetic Glycobiology: Parts, Systems, and Applications. Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. ACS Synth Biol 9 1534-1562 (2020)
  18. Chromatin and Metabolism. Suganuma T, Workman JL. Annu Rev Biochem 87 27-49 (2018)
  19. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Chen Y, Zhao X, Wu H. Arterioscler Thromb Vasc Biol 39 1911-1924 (2019)
  20. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. Eur J Hum Genet 28 706-714 (2020)
  21. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). Zachara NE. FEBS Lett 592 3950-3975 (2018)
  22. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Saha A, Bello D, Fernández-Tejada A. Chem Soc Rev 50 10451-10485 (2021)
  23. Deciphering the Functions of Protein O-GlcNAcylation with Chemistry. Worth M, Li H, Jiang J. ACS Chem Biol 12 326-335 (2017)
  24. The potential role of O-GlcNAc modification in cancer epigenetics. Forma E, Jóźwiak P, Bryś M, Krześlak A. Cell Mol Biol Lett 19 438-460 (2014)
  25. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. Front Genet 11 605263 (2020)
  26. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Sun TP. Curr Opin Struct Biol 68 113-121 (2021)
  27. Stem cell fate determination through protein O-GlcNAcylation. Sheikh MA, Emerald BS, Ansari SA. J Biol Chem 296 100035 (2021)
  28. The Beginner's Guide to O-GlcNAc: From Nutrient Sensitive Pathway Regulation to Its Impact on the Immune System. Mannino MP, Hart GW. Front Immunol 13 828648 (2022)
  29. Tools for functional dissection of site-specific O-GlcNAcylation. Gorelik A, van Aalten DMF. RSC Chem Biol 1 98-109 (2020)
  30. Demystifying O-GlcNAcylation: hints from peptide substrates. Shi J, Ruijtenbeek R, Pieters RJ. Glycobiology 28 814-824 (2018)
  31. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Sun L, Lv S, Song T. Discov Oncol 12 54 (2021)
  32. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Hu CW, Xie J, Jiang J. Cancers (Basel) 14 5135 (2022)
  33. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. Kim EJ. Chembiochem 18 1462-1472 (2017)
  34. O-GlcNAcylated peptides and proteins for structural and functional studies. Balana AT, Moon SP, Pratt MR. Curr Opin Struct Biol 68 84-93 (2021)
  35. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. MedComm (2020) 4 e456 (2023)

Articles citing this publication (70)

  1. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Pathak S, Alonso J, Schimpl M, Rafie K, Blair DE, Borodkin VS, Albarbarawi O, van Aalten DMF. Nat Struct Mol Biol 22 744-750 (2015)
  2. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Zentella R, Sui N, Barnhill B, Hsieh WP, Hu J, Shabanowitz J, Boyce M, Olszewski NE, Zhou P, Hunt DF, Sun TP. Nat Chem Biol 13 479-485 (2017)
  3. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors. Martin SES, Tan ZW, Itkonen HM, Duveau DY, Paulo JA, Janetzko J, Boutz PL, Törk L, Moss FA, Thomas CJ, Gygi SP, Lazarus MB, Walker S. J Am Chem Soc 140 13542-13545 (2018)
  4. Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. Vaidyanathan K, Niranjan T, Selvan N, Teo CF, May M, Patel S, Weatherly B, Skinner C, Opitz J, Carey J, Viskochil D, Gecz J, Shaw M, Peng Y, Alexov E, Wang T, Schwartz C, Wells L. J Biol Chem 292 8948-8963 (2017)
  5. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism. Itkonen HM, Gorad SS, Duveau DY, Martin SE, Barkovskaya A, Bathen TF, Moestue SA, Mills IG. Oncotarget 7 12464-12476 (2016)
  6. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. Lund PJ, Elias JE, Davis MM. J Immunol 197 3086-3098 (2016)
  7. Nutrient-driven O-GlcNAc cycling - think globally but act locally. Harwood KR, Hanover JA. J Cell Sci 127 1857-1867 (2014)
  8. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability. Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, Loza BF, Fuijkschot J, Ferenbach AT, van Gassen KLI, van Aalten DMF, Lefeber DJ. J Biol Chem 292 12621-12631 (2017)
  9. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T, Walker S. J Am Chem Soc 140 3510-3513 (2018)
  10. Extended O-GlcNAc on HLA Class-I-Bound Peptides. Marino F, Bern M, Mommen GPM, Leney AC, van Gaans-van den Brink JAM, Bonvin AMJJ, Becker C, van Els CACM, Heck AJR. J Am Chem Soc 137 10922-10925 (2015)
  11. Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode. Li B, Li H, Lu L, Jiang J. Nat Struct Mol Biol 24 362-369 (2017)
  12. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension. Barnes JW, Tian L, Heresi GA, Farver CF, Asosingh K, Comhair SA, Aulak KS, Dweik RA. Circulation 131 1260-1268 (2015)
  13. Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Kang KA, Piao MJ, Ryu YS, Kang HK, Chang WY, Keum YS, Hyun JW. Oncotarget 7 40594-40620 (2016)
  14. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. Joiner CM, Levine ZG, Aonbangkhen C, Woo CM, Walker S. J Am Chem Soc 141 12974-12978 (2019)
  15. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CC, Hou F, Zhang Y. PLoS One 10 e0145023 (2015)
  16. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Proc Natl Acad Sci U S A 116 14961-14970 (2019)
  17. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Rafie K, Raimi O, Ferenbach AT, Borodkin VS, Kapuria V, van Aalten DMF. Open Biol 7 170078 (2017)
  18. Substrate specificity of cytoplasmic N-glycosyltransferase. Naegeli A, Michaud G, Schubert M, Lin CW, Lizak C, Darbre T, Reymond JL, Aebi M. J Biol Chem 289 24521-24532 (2014)
  19. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T, Lin KI. Nat Commun 8 1854 (2017)
  20. BAP1 regulates cell cycle progression through E2F1 target genes and mediates transcriptional silencing via H2A monoubiquitination in uveal melanoma cells. Pan H, Jia R, Zhang L, Xu S, Wu Q, Song X, Zhang H, Ge S, Xu XL, Fan X. Int J Biochem Cell Biol 60 176-184 (2015)
  21. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Levine ZG, Potter SC, Joiner CM, Fei GQ, Nabet B, Sonnett M, Zachara NE, Gray NS, Paulo JA, Walker S. Proc Natl Acad Sci U S A 118 e2016778118 (2021)
  22. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Yu H, Takeuchi H, Takeuchi M, Liu Q, Kantharia J, Haltiwanger RS, Li H. Nat Chem Biol 12 735-740 (2016)
  23. Undetectable histone O-GlcNAcylation in mammalian cells. Gagnon J, Daou S, Zamorano N, Iannantuono NV, Hammond-Martel I, Mashtalir N, Bonneil E, Wurtele H, Thibault P, Affar el B. Epigenetics 10 677-691 (2015)
  24. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Hu CW, Worth M, Fan D, Li B, Li H, Lu L, Zhong X, Lin Z, Wei L, Ge Y, Li L, Jiang J. Nat Chem Biol 13 1267-1273 (2017)
  25. HCF-1 Regulates De Novo Lipogenesis through a Nutrient-Sensitive Complex with ChREBP. Lane EA, Choi DW, Garcia-Haro L, Levine ZG, Tedoldi M, Walker S, Danial NN. Mol Cell 75 357-371.e7 (2019)
  26. How the glycosyltransferase OGT catalyzes amide bond cleavage. Janetzko J, Trauger SA, Lazarus MB, Walker S. Nat Chem Biol 12 899-901 (2016)
  27. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Mariappa D, Zheng X, Schimpl M, Raimi O, Ferenbach AT, Müller HA, van Aalten DM. Open Biol 5 150234 (2015)
  28. Transcription factor Nrf1 is negatively regulated by its O-GlcNAcylation status. Chen J, Liu X, Lü F, Liu X, Ru Y, Ren Y, Yao L, Zhang Y. FEBS Lett 589 2347-2358 (2015)
  29. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Mol Cell Proteomics 20 100069 (2021)
  30. The O-GlcNAc Modification on Kinases. Schwein PA, Woo CM. ACS Chem Biol 15 602-617 (2020)
  31. The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. Gundogdu M, Llabrés S, Gorelik A, Ferenbach AT, Zachariae U, van Aalten DMF. Cell Chem Biol 25 513-518.e4 (2018)
  32. Cryo-EM structure provides insights into the dimer arrangement of the O-linked β-N-acetylglucosamine transferase OGT. Meek RW, Blaza JN, Busmann JA, Alteen MG, Vocadlo DJ, Davies GJ. Nat Commun 12 6508 (2021)
  33. Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity. Rodriguez AC, Yu SH, Li B, Zegzouti H, Kohler JJ. J Biol Chem 290 22638-22648 (2015)
  34. Inhibition of O-Linked N-Acetylglucosamine Transferase Reduces Replication of Herpes Simplex Virus and Human Cytomegalovirus. Angelova M, Ortiz-Meoz RF, Walker S, Knipe DM. J Virol 89 8474-8483 (2015)
  35. Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes. Kapuria V, Röhrig UF, Bhuiyan T, Borodkin VS, van Aalten DM, Zoete V, Herr W. Genes Dev 30 960-972 (2016)
  36. Distinct OGT-Binding Sites Promote HCF-1 Cleavage. Bhuiyan T, Waridel P, Kapuria V, Zoete V, Herr W. PLoS One 10 e0136636 (2015)
  37. The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. Urso SJ, Comly M, Hanover JA, Lamitina T. PLoS Genet 16 e1008821 (2020)
  38. O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes. Barkovskaya A, Seip K, Hilmarsdottir B, Maelandsmo GM, Moestue SA, Itkonen HM. Sci Rep 9 5670 (2019)
  39. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways. Joiner CM, Hammel FA, Janetzko J, Walker S. Biochemistry 60 847-853 (2021)
  40. Genomic Determinants of THAP11/ZNF143/HCFC1 Complex Recruitment to Chromatin. Vinckevicius A, Parker JB, Chakravarti D. Mol Cell Biol 35 4135-4146 (2015)
  41. Proteomic profiling and genome-wide mapping of O-GlcNAc chromatin-associated proteins reveal an O-GlcNAc-regulated genotoxic stress response. Liu Y, Chen Q, Zhang N, Zhang K, Dou T, Cao Y, Liu Y, Li K, Hao X, Xie X, Li W, Ren Y, Zhang J. Nat Commun 11 5898 (2020)
  42. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery complex. Daimon Y, Iwama-Masui C, Tanaka Y, Shiota T, Suzuki T, Miyazaki R, Sakurada H, Lithgow T, Dohmae N, Mori H, Tsukazaki T, Narita SI, Akiyama Y. Mol Microbiol 106 760-776 (2017)
  43. Aspartate Glycosylation Triggers Isomerization to Isoaspartate. Janetzko J, Walker S. J Am Chem Soc 139 3332-3335 (2017)
  44. Host cell factors stimulate HIV-1 transcription by antagonizing substrate-binding function of Siah1 ubiquitin ligase to stabilize transcription elongation factor ELL2. Wu J, Xue Y, Gao X, Zhou Q. Nucleic Acids Res 48 7321-7332 (2020)
  45. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A. Simon DN, Wriston A, Fan Q, Shabanowitz J, Florwick A, Dharmaraj T, Peterson SB, Gruenbaum Y, Carlson CR, Grønning-Wang LM, Hunt DF, Wilson KL. Cells 7 E44 (2018)
  46. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Liu W, Han G, Yin Y, Jiang S, Yu G, Yang Q, Yu W, Ye X, Su Y, Yang Y, Hart GW, Sun H. Glycobiology 28 363-373 (2018)
  47. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. Kositzke A, Fan D, Wang A, Li H, Worth M, Jiang J. Int J Biol Macromol 169 51-59 (2021)
  48. Proteolytic Cleavage Driven by Glycosylation. Kötzler MP, Withers SG. J Biol Chem 291 429-434 (2016)
  49. Evidence of a MOF histone acetyltransferase-containing NSL complex in C. elegans. Hoe M, Nicholas HR. Worm 3 e982967 (2014)
  50. Apart From Rhoptries, Identification of Toxoplasma gondii's O-GlcNAcylated Proteins Reinforces the Universality of the O-GlcNAcome. Aquino-Gil MO, Kupferschmid M, Shams-Eldin H, Schmidt J, Yamakawa N, Mortuaire M, Krzewinski F, Hardivillé S, Zenteno E, Rolando C, Bray F, Pérez Campos E, Dubremetz JF, Perez-Cervera Y, Schwarz RT, Lefebvre T. Front Endocrinol (Lausanne) 9 450 (2018)
  51. Congress Chemical biologists rush to San Francisco for the ICBS. Miller EW. Nat Chem Biol 11 91-95 (2015)
  52. Novel exon-skipping variant disrupting the basic domain of HCFC1 causes intellectual disability without metabolic abnormalities in both male and female patients. Wongkittichote P, Wegner DJ, Shinawi MS. J Hum Genet 66 717-724 (2021)
  53. Structural insights into mechanism and specificity of the plant protein O-fucosyltransferase SPINDLY. Zhu L, Wei X, Cong J, Zou J, Wan L, Xu S. Nat Commun 13 7424 (2022)
  54. O-GlcNAcylation Prediction: An Unattained Objective. Mauri T, Menu-Bouaouiche L, Bardor M, Lefebvre T, Lensink MF, Brysbaert G. Adv Appl Bioinform Chem 14 87-102 (2021)
  55. Combining Selective Enrichment and a Boosting Approach to Globally and Site-Specifically Characterize Protein Co-translational O-GlcNAcylation. Xu S, Yin K, Wu R. Anal Chem 95 4371-4380 (2023)
  56. HCF-2 inhibits cell proliferation and activates differentiation-gene expression programs. Gudkova D, Dergai O, Praz V, Herr W. Nucleic Acids Res 47 5792-5808 (2019)
  57. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. PLoS Genet 18 e1010159 (2022)
  58. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. Dis Model Mech 16 dmm049132 (2023)
  59. Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice. Li X, Lei C, Song Q, Bai L, Cheng B, Qin K, Li X, Ma B, Wang B, Zhou W, Chen X, Li J. Plant Biotechnol J 21 742-753 (2023)
  60. HCF-1 promotes cell cycle progression by regulating the expression of CDC42. Xiang P, Li F, Ma Z, Yue J, Lu C, You Y, Hou L, Yin B, Qiang B, Shu P, Peng X. Cell Death Dis 11 907 (2020)
  61. HCFC1 variants in the proteolysis domain are associated with X-linked idiopathic partial epilepsy: Exploring the underlying mechanism. He N, Guan BZ, Wang J, Liu HK, Mao Y, Liu ZG, Yin F, Peng J, Xiao B, Tang BS, Zhou D, Huang G, Dai QL, Zeng Y, Han H, Zhai QX, Li B, Tang B, Li WB, Song W, Liu L, Shi YW, Li BM, Su T, Zhou P, Liu XR, Guo LW, Yi YH, Liao WP. Clin Transl Med 13 e1289 (2023)
  62. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. Xu B, Zhang C, Jiang A, Zhang X, Liang F, Wang X, Li D, Liu C, Liu X, Xia J, Li Y, Wang Y, Yang Z, Chen J, Zhou Y, Chen L, Sun H. J Biol Chem 298 102115 (2022)
  63. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. Mitchell CW, Czajewski I, van Aalten DMF. J Biol Chem 298 102276 (2022)
  64. C-Terminal Arginine-Selective Cleavage of Peptides as a Method for Mimicking Carboxypeptidase B. Prosser LC, Talbott JM, Garrity RP, Raj M. Org Lett 25 6206-6210 (2023)
  65. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Lu P, Liu Y, He M, Cao T, Yang M, Qi S, Yu H, Gao H. Nat Commun 14 6952 (2023)
  66. Discovery of a New Drug-like Series of OGT Inhibitors by Virtual Screening. Loi EM, Tomašič T, Balsollier C, van Eekelen K, Weiss M, Gobec M, Alteen MG, Vocadlo DJ, Pieters RJ, Anderluh M. Molecules 27 1996 (2022)
  67. Engineered peptidic constructs metabolize amyloid β by self-assembly-driven reactions. Mondal T, Mandal B. Chem Commun (Camb) 55 4933-4936 (2019)
  68. Enzyme mechanisms: Sugary shears. Goddard-Borger ED. Nat Chem Biol 12 892-893 (2016)
  69. Exploration of O-GlcNAc transferase glycosylation sites reveals a target sequence compositional bias. Chong PA, Nosella ML, Vanama M, Ruiz-Arduengo R, Forman-Kay JD. J Biol Chem 299 104629 (2023)
  70. Investigation of the Catalytic Mechanism of a Soluble N-glycosyltransferase Allows Synthesis of N-glycans at Noncanonical Sequons. Hao Z, Guo Q, Feng Y, Zhang Z, Li T, Tian Z, Zheng J, Da LT, Peng W. JACS Au 3 2144-2155 (2023)