4mt7 Citations

A conformational switch in collybistin determines the differentiation of inhibitory postsynapses.

Abstract

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin-based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin-2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans-synaptic neuroligin-dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin-based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.

Articles - 4mt7 mentioned but not cited (4)

  1. A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. Soykan T, Schneeberger D, Tria G, Buechner C, Bader N, Svergun D, Tessmer I, Poulopoulos A, Papadopoulos T, Varoqueaux F, Schindelin H, Brose N. EMBO J 33 2113-2133 (2014)
  2. Targeting GABAAR-Associated Proteins: New Modulators, Labels and Concepts. Khayenko V, Maric HM. Front Mol Neurosci 12 162 (2019)
  3. Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability. Chiou TT, Long P, Schumann-Gillett A, Kanamarlapudi V, Haas SA, Harvey K, O'Mara ML, De Blas AL, Kalscheuer VM, Harvey RJ. Front Mol Neurosci 12 60 (2019)
  4. Deciphering the conformational dynamics of gephyrin-mediated collybistin activation. Imam N, Choudhury S, Hemmen K, Heinze KG, Schindelin H. Biophys Rep (N Y) 2 100079 (2022)


Reviews citing this publication (16)

  1. The cellular and molecular landscape of neuroligins. Bemben MA, Shipman SL, Nicoll RA, Roche KW. Trends Neurosci 38 496-505 (2015)
  2. Gephyrin: a central GABAergic synapse organizer. Choii G, Ko J. Exp Mol Med 47 e158 (2015)
  3. GABA type a receptor trafficking and the architecture of synaptic inhibition. Lorenz-Guertin JM, Jacob TC. Dev Neurobiol 78 238-270 (2018)
  4. Role of GABAA R trafficking in the plasticity of inhibitory synapses. Mele M, Leal G, Duarte CB. J Neurochem 139 997-1018 (2016)
  5. Organizers of inhibitory synapses come of age. Krueger-Burg D, Papadopoulos T, Brose N. Curr Opin Neurobiol 45 66-77 (2017)
  6. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Open Biol 9 180265 (2019)
  7. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Histochem Cell Biol 150 489-508 (2018)
  8. Regulation of GABAergic synapse development by postsynaptic membrane proteins. Lu W, Bromley-Coolidge S, Li J. Brain Res Bull 129 30-42 (2017)
  9. Structure-Function Relationships of Glycine and GABAA Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Kasaragod VB, Schindelin H. Front Mol Neurosci 11 317 (2018)
  10. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Alvarez FJ. Brain Res Bull 129 50-65 (2017)
  11. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Langlhofer G, Villmann C. Front Mol Neurosci 9 41 (2016)
  12. Impaired Glycine Receptor Trafficking in Neurological Diseases. Schaefer N, Roemer V, Janzen D, Villmann C. Front Mol Neurosci 11 291 (2018)
  13. Postsynaptic protein organization revealed by electron microscopy. Liu YT, Tao CL, Lau PM, Zhou ZH, Bi GQ. Curr Opin Struct Biol 54 152-160 (2019)
  14. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Gamlin CR, Yu WQ, Wong ROL, Hoon M. Neural Dev 13 12 (2018)
  15. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts. Jedlicka P, Muellerleile J, Schwarzacher SW. Neural Plast 2018 6015753 (2018)
  16. Synaptic localization of neurotransmitter receptors: comparing mechanisms for AMPA and GABAA receptors. Martenson JS, Tomita S. Curr Opin Pharmacol 20 102-108 (2015)

Articles citing this publication (32)

  1. GARLH Family Proteins Stabilize GABAA Receptors at Synapses. Yamasaki T, Hoyos-Ramirez E, Martenson JS, Morimoto-Tomita M, Tomita S. Neuron 93 1138-1152.e6 (2017)
  2. Perturbed Hippocampal Synaptic Inhibition and γ-Oscillations in a Neuroligin-4 Knockout Mouse Model of Autism. Hammer M, Krueger-Burg D, Tuffy LP, Cooper BH, Taschenberger H, Goswami SP, Ehrenreich H, Jonas P, Varoqueaux F, Rhee JS, Brose N. Cell Rep 13 516-523 (2015)
  3. Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development. Li J, Han W, Pelkey KA, Duan J, Mao X, Wang YX, Craig MT, Dong L, Petralia RS, McBain CJ, Lu W. Neuron 96 808-826.e8 (2017)
  4. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, Acuña MA, Wildner H, Yévenes GE, Dieter A, Kawasaki H, O Hottiger M, Zeilhofer HU, Fritschy JM, Tyagarajan SK. Nat Commun 7 13365 (2016)
  5. Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin. Hines RM, Maric HM, Hines DJ, Modgil A, Panzanelli P, Nakamura Y, Nathanson AJ, Cross A, Deeb T, Brandon NJ, Davies P, Fritschy JM, Schindelin H, Moss SJ. Nat Commun 9 3130 (2018)
  6. ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation. Wang JY, Zhou P, Wang J, Tang B, Su T, Liu XR, Li BM, Meng H, Shi YW, Yi YH, He N, Liao WP. Neurogenetics 19 9-16 (2018)
  7. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses. Papadopoulos T, Rhee HJ, Subramanian D, Paraskevopoulou F, Mueller R, Schultz C, Brose N, Rhee JS, Betz H. J Biol Chem 292 1160-1177 (2017)
  8. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. Lenoir M, Kufareva I, Abagyan R, Overduin M. Membranes (Basel) 5 646-663 (2015)
  9. A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation. Letellier M, Szíber Z, Chamma I, Saphy C, Papasideri I, Tessier B, Sainlos M, Czöndör K, Thoumine O. Nat Commun 9 3979 (2018)
  10. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses. Nguyen QA, Horn ME, Nicoll RA. Elife 5 e19236 (2016)
  11. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability. Papadopoulos T, Schemm R, Grubmüller H, Brose N. J Biol Chem 290 8256-8270 (2015)
  12. Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus. Panzanelli P, Früh S, Fritschy JM. Brain Struct Funct 222 4149-4161 (2017)
  13. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL. J Comp Neurol 523 1359-1378 (2015)
  14. Specificity of Collybistin-Phosphoinositide Interactions: IMPACT OF THE INDIVIDUAL PROTEIN DOMAINS. Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, Schindelin H, Steinem C. J Biol Chem 291 244-254 (2016)
  15. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. Fekete CD, Goz RU, Dinallo S, Miralles CP, Chiou TT, Bear J, Fiondella CG, LoTurco JJ, De Blas AL. J Comp Neurol 525 1291-1311 (2017)
  16. Analysis of splice variants for the C. elegans orthologue of human neuroligin reveals a developmentally regulated transcript. Calahorro F, Holden-Dye L, O'Connor V. Gene Expr Patterns 17 69-78 (2015)
  17. RhoGEF9 splice isoforms influence neuronal maturation and synapse formation downstream of α2 GABAA receptors. de Groot C, Floriou-Servou A, Tsai YC, Früh S, Kohler M, Parkin G, Schwerdel C, Bosshard G, Kaila K, Fritschy JM, Tyagarajan SK. PLoS Genet 13 e1007073 (2017)
  18. Unbalance between Excitation and Inhibition in Phenylketonuria, a Genetic Metabolic Disease Associated with Autism. De Jaco A, Mango D, De Angelis F, Favaloro FL, Andolina D, Nisticò R, Fiori E, Colamartino M, Pascucci T. Int J Mol Sci 18 E941 (2017)
  19. GSK3 and KIF5 regulate activity-dependent sorting of gephyrin between axons and dendrites. Rathgeber L, Gromova KV, Schaefer I, Breiden P, Lohr C, Kneussel M. Eur J Cell Biol 94 173-178 (2015)
  20. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABAA receptor α2 subunit. Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Mol Psychiatry 27 1729-1741 (2022)
  21. A proline-rich motif in the large intracellular loop of the glycine receptor α1 subunit interacts with the Pleckstrin homology domain of collybistin. Breitinger U, Weinländer K, Pechmann Y, Langlhofer G, Enz R, Becker CM, Sticht H, Kneussel M, Villmann C, Breitinger HG. J Adv Res 29 95-106 (2021)
  22. Double inhibition and activation mechanisms of Ephexin family RhoGEFs. Zhang M, Lin L, Wang C, Zhu J. Proc Natl Acad Sci U S A 118 e2024465118 (2021)
  23. Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. Schäfer J, Förster L, Mey I, Papadopoulos T, Brose N, Steinem C. J Biol Chem 295 18604-18613 (2020)
  24. Biochemical and Morphological Characterization of a Guanine Nucleotide Exchange Factor ARHGEF9 in Mouse Tissues. Ibaraki K, Mizuno M, Aoki H, Niwa A, Iwamoto I, Hara A, Tabata H, Ito H, Nagata KI. Acta Histochem Cytochem 51 119-128 (2018)
  25. ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C. iScience 25 104795 (2022)
  26. Binding of gephyrin to microtubules is regulated by its phosphorylation at Ser270. Zhou L, Kiss E, Demmig R, Kirsch J, Nawrotzki RA, Kuhse J. Histochem Cell Biol 156 5-18 (2021)
  27. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Front Mol Neurosci 15 1073627 (2022)
  28. Selective Overexpression of Collybistin in Mouse Hippocampal Pyramidal Cells Enhances GABAergic Neurotransmission and Protects against PTZ-Induced Seizures. George S, James S, De Blas AL. eNeuro 8 ENEURO.0561-20.2021 (2021)
  29. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Imam N, Choudhury S, Heinze KG, Schindelin H. Front Synaptic Neurosci 14 959875 (2022)
  30. Loss of CDKL5 Causes Synaptic GABAergic Defects That Can Be Restored with the Neuroactive Steroid Pregnenolone-Methyl-Ether. De Rosa R, Valastro S, Cambria C, Barbiero I, Puricelli C, Tramarin M, Randi S, Bianchi M, Antonucci F, Kilstrup-Nielsen C. Int J Mol Sci 24 68 (2022)
  31. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, Gutkind JS, Li S, Tesmer JJG. J Biol Chem 298 102209 (2022)
  32. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. J Biol Chem 299 105361 (2023)