4js1 Citations

The structure of human α-2,6-sialyltransferase reveals the binding mode of complex glycans.

Acta Crystallogr D Biol Crystallogr 69 1826-38 (2013)
Cited: 53 times
EuropePMC logo PMID: 23999306

Abstract

Human β-galactoside α-2,6-sialyltransferase I (ST6Gal-I) establishes the final glycosylation pattern of many glycoproteins by transferring a sialyl moiety to a terminal galactose. Complete sialylation of therapeutic immunoglobulins is essential for their anti-inflammatory activity and protein stability, but is difficult to achieve in vitro owing to the limited activity of ST6Gal-I towards some galactose acceptors. No structural information on ST6Gal-I that could help to improve the enzymatic properties of ST6Gal-I for biotechnological purposes is currently available. Here, the crystal structures of human ST6Gal-I in complex with the product cytidine 5'-monophosphate and in complex with cytidine and phosphate are described. These complexes allow the rationalization of the inhibitory activity of cytosine-based nucleotides. ST6Gal-I adopts a variant of the canonical glycosyltransferase A fold and differs from related sialyltransferases by several large insertions and deletions that determine its regiospecificity and substrate specificity. A large glycan from a symmetry mate localizes to the active site of ST6Gal-I in an orientation compatible with catalysis. The glycan binding mode can be generalized to any glycoprotein that is a substrate of ST6Gal-I. Comparison with a bacterial sialyltransferase in complex with a modified sialyl donor lends insight into the Michaelis complex. The results support an SN2 mechanism with inversion of configuration at the sialyl residue and suggest substrate-assisted catalysis with a charge-relay mechanism that bears a conceptual similarity to serine proteases.

Reviews - 4js1 mentioned but not cited (4)

Articles - 4js1 mentioned but not cited (7)

  1. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, Xiang Y, Seetharaman J, Milaninia S, Su M, Bridger R, Veillon L, Azadi P, Kornhaber G, Wells L, Montelione GT, Woods RJ, Tong L, Moremen KW. J. Biol. Chem. 288 34680-34698 (2013)
  2. Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli. Ortiz-Soto ME, Seibel J. PLoS ONE 11 e0155410 (2016)
  3. Modeling of Oligosaccharides within Glycoproteins from Free-Energy Landscapes. Turupcu A, Oostenbrink C. J Chem Inf Model 57 2222-2236 (2017)
  4. NMR Resonance Assignment Methodology: Characterizing Large Sparsely Labeled Glycoproteins. Chalmers GR, Eletsky A, Morris LC, Yang JY, Tian F, Woods RJ, Moremen KW, Prestegard JH. J Mol Biol 431 2369-2382 (2019)
  5. Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Kawade H, Morise J, Mishra SK, Tsujioka S, Oka S, Kizuka Y. Molecules 26 5176 (2021)
  6. Bisecting GlcNAc Is a General Suppressor of Terminal Modification of N-glycan. Nakano M, Mishra SK, Tokoro Y, Sato K, Nakajima K, Yamaguchi Y, Taniguchi N, Kizuka Y. Mol. Cell Proteomics 18 2044-2057 (2019)
  7. Enhanced Production of ECM Proteins for Pharmaceutical Applications Using Mammalian Cells and Sodium Heparin Supplementation. Garcia-Pardo J, Montané S, Avilés FX, Tanco S, Lorenzo J. Pharmaceutics 14 2138 (2022)


Reviews citing this publication (17)

  1. Advances in understanding glycosyltransferases from a structural perspective. Gloster TM. Curr. Opin. Struct. Biol. 28 131-141 (2014)
  2. Glycosyltransferases: mechanisms and applications in natural product development. Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Chem Soc Rev 44 8350-8374 (2015)
  3. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Bhide GP, Colley KJ. Histochem. Cell Biol. 147 149-174 (2017)
  4. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Kellokumpu S, Hassinen A, Glumoff T. Cell. Mol. Life Sci. 73 305-325 (2016)
  5. Targeting Selectins and Their Ligands in Cancer. Natoni A, Macauley MS, O'Dwyer ME. Front Oncol 6 93 (2016)
  6. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Hanson QM, Barb AW. Biochemistry 54 2931-2942 (2015)
  7. Crossroads between Bacterial and Mammalian Glycosyltransferases. Brockhausen I. Front Immunol 5 492 (2014)
  8. Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Pietrobono S, Stecca B. Cancers (Basel) 13 2014 (2021)
  9. Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers. Harrus D, Kellokumpu S, Glumoff T. Cell. Mol. Life Sci. 75 833-848 (2018)
  10. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Bowles WHD, Gloster TM. Front Mol Biosci 8 705133 (2021)
  11. Aberrant Sialylation in Cancer: Therapeutic Opportunities. Munkley J. Cancers (Basel) 14 4248 (2022)
  12. Cellular and Molecular Engineering of Glycan Sialylation in Heterologous Systems. Hombu R, Neelamegham S, Park S. Molecules 26 5950 (2021)
  13. Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. Luley-Goedl C, Czabany T, Longus K, Schmölzer K, Zitzenbacher S, Ribitsch D, Schwab H, Nidetzky B. J. Biotechnol. 235 54-60 (2016)
  14. A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. O'Brien ME, Murray G, Gogoi D, Yusuf A, McCarthy C, Wormald MR, Casey M, Gabillard-Lefort C, McElvaney NG, Reeves EP. Int J Mol Sci 23 2441 (2022)
  15. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Moremen KW, Haltiwanger RS. Nat. Chem. Biol. 15 853-864 (2019)
  16. Insights into the role of sialylation in cancer progression and metastasis. Dobie C, Skropeta D. Br J Cancer 124 76-90 (2021)
  17. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Tvaroška I, Selvaraj C, Koča J. Molecules 25 (2020)

Articles citing this publication (25)

  1. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Volkers G, Worrall LJ, Kwan DH, Yu CC, Baumann L, Lameignere E, Wasney GA, Scott NE, Wakarchuk W, Foster LJ, Withers SG, Strynadka NC. Nat. Struct. Mol. Biol. 22 627-635 (2015)
  2. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Baumann AM, Bakkers MJ, Buettner FF, Hartmann M, Grove M, Langereis MA, de Groot RJ, Mühlenhoff M. Nat Commun 6 7673 (2015)
  3. Expression system for structural and functional studies of human glycosylation enzymes. Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang JY, Prabhakar PK, Johnson R, Rosa MD, Geisler C, Nairn AV, Seetharaman J, Wu SC, Tong L, Gilbert HJ, LaBaer J, Jarvis DL. Nat. Chem. Biol. 14 156-162 (2018)
  4. Arabinogalactan biosynthesis: Implication of AtGALT29A enzyme activity regulated by phosphorylation and co-localized enzymes for nucleotide sugar metabolism in the compartments outside of the Golgi apparatus. Poulsen CP, Dilokpimol A, Geshi N. Plant Signal Behav 10 e984524 (2015)
  5. High-quality production of human α-2,6-sialyltransferase in Pichia pastoris requires control over N-terminal truncations by host-inherent protease activities. Ribitsch D, Zitzenbacher S, Augustin P, Schmölzer K, Czabany T, Luley-Goedl C, Thomann M, Jung C, Sobek H, Müller R, Nidetzky B, Schwab H. Microb. Cell Fact. 13 138 (2014)
  6. Probing the CMP-Sialic Acid Donor Specificity of Two Human β-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins. Noel M, Gilormini PA, Cogez V, Yamakawa N, Vicogne D, Lion C, Biot C, Guérardel Y, Harduin-Lepers A. Chembiochem 18 1251-1259 (2017)
  7. The Human Lung Glycome Reveals Novel Glycan Ligands for Influenza A Virus. Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN, Lobby JL, Kohlmeier JE, Steinhauer DA, Cummings RD. Sci Rep 10 5320 (2020)
  8. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design. Montgomery A, Szabo R, Skropeta D, Yu H. J. Mol. Recognit. 29 210-222 (2016)
  9. The disulfide catalyst QSOX1 maintains the colon mucosal barrier by regulating Golgi glycosyltransferases. Ilani T, Reznik N, Yeshaya N, Feldman T, Vilela P, Lansky Z, Javitt G, Shemesh M, Brenner O, Elkis Y, Varsano N, Jaramillo AM, Evans CM, Fass D. EMBO J 42 e111869 (2023)
  10. The Polybasic Region of the Polysialyltransferase ST8Sia-IV Binds Directly to the Neural Cell Adhesion Molecule, NCAM. Bhide GP, Prehna G, Ramirez BE, Colley KJ. Biochemistry 56 1504-1517 (2017)
  11. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. Redox Biol 24 101182 (2019)
  12. Assembly of B4GALT1/ST6GAL1 heteromers in the Golgi membranes involves lateral interactions via highly charged surface domains. Khoder-Agha F, Harrus D, Brysbaert G, Lensink MF, Harduin-Lepers A, Glumoff T, Kellokumpu S. J Biol Chem 294 14383-14393 (2019)
  13. Computer-aided design of human sialyltransferase inhibitors of hST8Sia III. Dobie C, Montgomery AP, Szabo R, Skropeta D, Yu H. J. Mol. Recognit. 31 (2018)
  14. Potent Metabolic Sialylation Inhibitors Based on C-5-Modified Fluorinated Sialic Acids. Heise T, Pijnenborg JFA, Büll C, van Hilten N, Kers-Rebel ED, Balneger N, Elferink H, Adema GJ, Boltje TJ. J. Med. Chem. 62 1014-1021 (2019)
  15. Selective Exoenzymatic Labeling of Lipooligosaccharides of Neisseria gonorrhoeae with α2,6-Sialoside Analogues. de Jong H, Moure MJ, Hartman JEM, Bosman GP, Ong JY, Bardoel BW, Boons GJ, Wösten MMSM, Wennekes T. Chembiochem 23 e202200340 (2022)
  16. Transition state-based ST6Gal I inhibitors: Mimicking the phosphodiester linkage with a triazole or carbamate through an enthalpy-entropy compensation. Montgomery AP, Skropeta D, Yu H. Sci Rep 7 14428 (2017)
  17. Two N-terminally truncated variants of human β-galactoside α2,6 sialyltransferase I with distinct properties for in vitro protein glycosylation. Luley-Goedl C, Schmoelzer K, Thomann M, Malik S, Greif M, Ribitsch D, Jung C, Sobek H, Engel A, Mueller R, Schwab H, Nidetzky B. Glycobiology 26 1097-1106 (2016)
  18. Variability among TSH Measurements Can Be Reduced by Combining a Glycoengineered Calibrator to Epitope-Defined Immunoassays. Donadio-Andréi S, Chikh K, Heuclin C, Kuczewski E, Charrié A, Gauchez AS, Ronin C. Eur Thyroid J 6 3-11 (2017)
  19. A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans. Jaroentomeechai T, Kwon YH, Liu Y, Young O, Bhawal R, Wilson JD, Li M, Chapla DG, Moremen KW, Jewett MC, Mizrachi D, DeLisa MP. Nat Commun 13 6325 (2022)
  20. An Integrated Mass Spectrometry-Based Glycomics-Driven Glycoproteomics Analytical Platform to Functionally Characterize Glycosylation Inhibitors. Alvarez MRS, Zhou Q, Grijaldo SJB, Lebrilla CB, Nacario RC, Heralde FM, Rabajante JF, Completo GC. Molecules 27 3834 (2022)
  21. Engineering of CHO cells for the production of vertebrate recombinant sialyltransferases. Houeix B, Cairns MT. PeerJ 7 e5788 (2019)
  22. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Structure 27 55-65.e3 (2019)
  23. Structural and functional role of disulphide bonds and substrate binding residues of the human beta-galactoside alpha-2,3-sialyltransferase 1 (hST3Gal1). Ortiz-Soto ME, Reising S, Schlosser A, Seibel J. Sci Rep 9 17993 (2019)
  24. The Rapidly Expanding Nexus of Immunoglobulin G N-Glycomics, Suboptimal Health Status, and Precision Medicine. Russell A, Wang W. Exp Suppl 112 545-564 (2021)
  25. Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of diabetic mice and functional characterization on Cav3.2 channels. Stringer RN, Lazniewska J, Weiss N. Channels (Austin) 14 132-140 (2020)