4ihb Citations

Alternate splicing of dysferlin C2A confers Ca²⁺-dependent and Ca²⁺-independent binding for membrane repair.

Abstract

Dysferlin plays a critical role in the Ca²⁺-dependent repair of microlesions that occur in the muscle sarcolemma. Of the seven C2 domains in dysferlin, only C2A is reported to bind both Ca²⁺ and phospholipid, thus acting as a key sensor in membrane repair. Dysferlin C2A exists as two isoforms, the "canonical" C2A and C2A variant 1 (C2Av1). Interestingly, these isoforms have markedly different responses to Ca²⁺ and phospholipid. Structural and thermodynamic analyses are consistent with the canonical C2A domain as a Ca²⁺-dependent, phospholipid-binding domain, whereas C2Av1 would likely be Ca²⁺-independent under physiological conditions. Additionally, both isoforms display remarkably low free energies of stability, indicative of a highly flexible structure. The inverted ligand preference and flexibility for both C2A isoforms suggest the capability for both constitutive and Ca²⁺-regulated effector interactions, an activity that would be essential in its role as a mediator of membrane repair.

Articles - 4ihb mentioned but not cited (8)

  1. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Elife 6 e31013 (2017)
  2. Many-body effect determines the selectivity for Ca2+ and Mg2+ in proteins. Jing Z, Liu C, Qi R, Ren P. Proc Natl Acad Sci U S A 115 E7495-E7501 (2018)
  3. Alternate splicing of dysferlin C2A confers Ca²⁺-dependent and Ca²⁺-independent binding for membrane repair. Fuson K, Rice A, Mahling R, Snow A, Nayak K, Shanbhogue P, Meyer AG, Redpath GM, Hinderliter A, Cooper ST, Sutton RB. Structure 22 104-115 (2014)
  4. Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin. Harsini FM, Bui AA, Rice AM, Chebrolu S, Fuson KL, Turtoi A, Bradberry M, Chapman ER, Sutton RB. J Mol Biol 431 2112-2126 (2019)
  5. Redefining the architecture of ferlin proteins: Insights into multi-domain protein structure and function. Dominguez MJ, McCord JJ, Sutton RB. PLoS One 17 e0270188 (2022)
  6. Attenuated clinical and osteoclastic phenotypes of Paget's disease of bone linked to the p.Pro392Leu/SQSTM1 mutation by a rare variant in the DOCK6 gene. Dessay M, Couture E, Maaroufi H, Fournier F, Gagnon E, Droit A, Brown JP, Michou L. BMC Med Genomics 15 41 (2022)
  7. Time-series transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and anhydrobiosis in tardigrades. Yoshida Y, Satoh T, Ota C, Tanaka S, Horikawa DD, Tomita M, Kato K, Arakawa K. BMC Genomics 23 405 (2022)
  8. Limb-Girdle Muscular Dystrophy Type 2B (LGMD2B) caused by Pathogenic Splice and Missense Variants of DYSF Gene among Iranians with Muscular Dystrophy. Arab F, Ahangari N, Malek H, Doosti M, Najarzadeh Torbati P, Ghayoor Karimiani E. Adv Biomed Res 12 150 (2023)


Reviews citing this publication (9)

  1. Auditory neuropathy--neural and synaptic mechanisms. Moser T, Starr A. Nat Rev Neurol 12 135-149 (2016)
  2. Anoctamins/TMEM16 Proteins: Chloride Channels Flirting with Lipids and Extracellular Vesicles. Whitlock JM, Hartzell HC. Annu Rev Physiol 79 119-143 (2017)
  3. Dysferlin at transverse tubules regulates Ca(2+) homeostasis in skeletal muscle. Kerr JP, Ward CW, Bloch RJ. Front Physiol 5 89 (2014)
  4. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Exp Neurol 283 246-254 (2016)
  5. Membrane Injury and Repair in the Muscular Dystrophies. Cooper ST, Head SI. Neuroscientist 21 653-668 (2015)
  6. Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. De Siati RD, Rosenzweig F, Gersdorff G, Gregoire A, Rombaux P, Deggouj N. J Clin Med 9 E1074 (2020)
  7. Functions of Vertebrate Ferlins. Bulankina AV, Thoms S. Cells 9 E534 (2020)
  8. Ferlin Overview: From Membrane to Cancer Biology. Peulen O, Rademaker G, Anania S, Turtoi A, Bellahcène A, Castronovo V. Cells 8 E954 (2019)
  9. Role of calcium-sensor proteins in cell membrane repair. Li Z, Shaw GS. Biosci Rep 43 BSR20220765 (2023)

Articles citing this publication (19)

  1. AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR. Ann Clin Transl Neurol 2 256-270 (2015)
  2. Rapid actin-cytoskeleton-dependent recruitment of plasma membrane-derived dysferlin at wounds is critical for muscle membrane repair. McDade JR, Archambeau A, Michele DE. FASEB J 28 3660-3670 (2014)
  3. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. Hammers DW, Sleeper MM, Forbes SC, Coker CC, Jirousek MR, Zimmer M, Walter GA, Sweeney HL. JCI Insight 1 e90341 (2016)
  4. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Diaz M, Sanchez-Barrena MJ, Gonzalez-Rubio JM, Rodriguez L, Fernandez D, Antoni R, Yunta C, Belda-Palazon B, Gonzalez-Guzman M, Peirats-Llobet M, Menendez M, Boskovic J, Marquez JA, Rodriguez PL, Albert A. Proc Natl Acad Sci U S A 113 E396-405 (2016)
  5. Ferlins Show Tissue-Specific Expression and Segregate as Plasma Membrane/Late Endosomal or Trans-Golgi/Recycling Ferlins. Redpath GM, Sophocleous RA, Turnbull L, Whitchurch CB, Cooper ST. Traffic 17 245-266 (2016)
  6. Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Gushchina LV, Bhattacharya S, McElhanon KE, Choi JH, Manring H, Beck EX, Alloush J, Weisleder N. Mol Ther 25 2360-2371 (2017)
  7. ANO5 ensures trafficking of annexins in wounded myofibers. Foltz SJ, Cui YY, Choo HJ, Hartzell HC. J Cell Biol 220 e202007059 (2021)
  8. Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. Hofhuis J, Bersch K, Büssenschütt R, Drzymalski M, Liebetanz D, Nikolaev VO, Wagner S, Maier LS, Gärtner J, Klinge L, Thoms S. J Cell Sci 130 841-852 (2017)
  9. FerA is a Membrane-Associating Four-Helix Bundle Domain in the Ferlin Family of Membrane-Fusion Proteins. Harsini FM, Chebrolu S, Fuson KL, White MA, Rice AM, Sutton RB. Sci Rep 8 10949 (2018)
  10. Cytochrome c nitrite reductase from the bacterium Geobacter lovleyi represents a new NrfA subclass. Campeciño J, Lagishetty S, Wawrzak Z, Sosa Alfaro V, Lehnert N, Reguera G, Hu J, Hegg EL. J Biol Chem 295 11455-11465 (2020)
  11. Limited proteolysis as a tool to probe the tertiary conformation of dysferlin and structural consequences of patient missense variant L344P. Woolger N, Bournazos A, Sophocleous RA, Evesson FJ, Lek A, Driemer B, Sutton RB, Cooper ST. J Biol Chem 292 18577-18591 (2017)
  12. Otoferlin C2F Domain-Induced Changes in Membrane Structure Observed by Sum Frequency Generation. Golbek TW, Padmanarayana M, Roeters SJ, Weidner T, Johnson CP, Baio JE. Biophys J 117 1820-1830 (2019)
  13. Pathogenic mutation R959W alters recognition dynamics of dysferlin inner DysF domain. Espinoza-Fonseca LM. Mol Biosyst 12 973-981 (2016)
  14. The C2 domains of dysferlin: roles in membrane localization, Ca2+ signalling and sarcolemmal repair. Muriel J, Lukyanenko V, Kwiatkowski T, Bhattacharya S, Garman D, Weisleder N, Bloch RJ. J Physiol 600 1953-1968 (2022)
  15. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca2+ Elevation via PDCD6 and FKBP8. Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Int J Mol Sci 24 4707 (2023)
  16. Screening two mutations in the dysferlin gene by exon capture and sequence analysis: A case report. Wang X, Yang Y, Zhou R. Exp Ther Med 12 41-44 (2016)
  17. Surface plasmon resonance and microscale thermophoresis approaches for determining the affinity of perforin for calcium ions. Naneh O, Kozorog M, Merzel F, Gilbert R, Anderluh G. Front Immunol 14 1181020 (2023)
  18. The Dysferlin C2A Domain Binds PI(4,5)P2 and Penetrates Membranes. Kwok E, Otto SC, Khuu P, Carpenter AP, Codding SJ, Reardon PN, Vanegas J, Kumar TM, Kuykendall CJ, Mehl RA, Baio J, Johnson CP. J Mol Biol 435 168193 (2023)
  19. The structure and flexibility analysis of the Arabidopsis synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Benavente JL, Siliqi D, Infantes L, Lagartera L, Mills A, Gago F, Ruiz-López N, Botella MA, Sánchez-Barrena MJ, Albert A. Life Sci Alliance 4 e202101152 (2021)