4hi0 Citations

Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease.

PLoS Biol 11 e1001678 (2013)
Cited: 62 times
EuropePMC logo PMID: 24115911

Abstract

Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease.

Reviews - 4hi0 mentioned but not cited (3)

  1. Metallochaperones and metalloregulation in bacteria. Capdevila DA, Edmonds KA, Giedroc DP. Essays Biochem 61 177-200 (2017)
  2. The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes. Vaccaro FA, Drennan CL. Metallomics 14 mfac030 (2022)
  3. Evolution of Macromolecular Docking Techniques: The Case Study of Nickel and Iron Metabolism in Pathogenic Bacteria. Musiani F, Ciurli S. Molecules 20 14265-14292 (2015)

Articles - 4hi0 mentioned but not cited (18)

  1. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB. PLoS Biol 11 e1001678 (2013)
  2. Nickel binding properties of Helicobacter pylori UreF, an accessory protein in the nickel-based activation of urease. Zambelli B, Berardi A, Martin-Diaconescu V, Mazzei L, Musiani F, Maroney MJ, Ciurli S. J Biol Inorg Chem 19 319-334 (2014)
  3. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation. Yuen MH, Fong YH, Nim YS, Lau PH, Wong KB. Proc Natl Acad Sci U S A 114 E10890-E10898 (2017)
  4. Modeling the assembly order of multimeric heteroprotein complexes. Peterson LX, Togawa Y, Esquivel-Rodriguez J, Terashi G, Christoffer C, Roy A, Shin WH, Kihara D. PLoS Comput Biol 14 e1005937 (2018)
  5. Molecular Docking and Efficacy of Aloe vera Gel Based on Chitosan Nanoparticles against Helicobacter pylori and Its Antioxidant and Anti-Inflammatory Activities. Yahya R, Al-Rajhi AMH, Alzaid SZ, Al Abboud MA, Almuhayawi MS, Al Jaouni SK, Selim S, Ismail KS, Abdelghany TM. Polymers (Basel) 14 2994 (2022)
  6. Mutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of Klebsiella aerogenes Urease. Farrugia MA, Wang B, Feig M, Hausinger RP. Biochemistry 54 6392-6401 (2015)
  7. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Edmonds KA, Jordan MR, Giedroc DP. Metallomics 13 mfab046 (2021)
  8. Preparation, urease inhibition mechanisms, and anti-Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. Sharaf M, Arif M, Hamouda HI, Khan S, Abdalla M, Shabana S, Rozan HE, Khan TU, Chi Z, Liu C. Curr Res Microb Sci 3 100103 (2022)
  9. Pharmacological Evaluation of Acacia nilotica Flower Extract against Helicobacter pylori and Human Hepatocellular Carcinoma In Vitro and In Silico. Al-Rajhi AMH, Qanash H, Bazaid AS, Binsaleh NK, Abdelghany TM. J Funct Biomater 14 237 (2023)
  10. Metallochaperone UreG serves as a new target for design of urease inhibitor: A novel strategy for development of antimicrobials. Yang X, Koohi-Moghadam M, Wang R, Chang YY, Woo PCY, Wang J, Li H, Sun H. PLoS Biol 16 e2003887 (2018)
  11. Nickel and GTP Modulate Helicobacter pylori UreG Structural Flexibility. Pierro A, Etienne E, Gerbaud G, Guigliarelli B, Ciurli S, Belle V, Zambelli B, Mileo E. Biomolecules 10 E1062 (2020)
  12. Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Masetti M, Falchi F, Gioia D, Recanatini M, Ciurli S, Musiani F. Molecules 25 E2911 (2020)
  13. Delivering a toxic metal to the active site of urease. Nim YS, Fong IYH, Deme J, Tsang KL, Caesar J, Johnson S, Pang LTH, Yuen NMH, Ng TLC, Choi T, Wong YYH, Lea SM, Wong KB. Sci Adv 9 eadf7790 (2023)
  14. Structural characterization of the urease accessory protein UreF from Klebsiella pneumoniae. Liu S, Wu W, Zhao Q, Liang H, Che S, Zhang H, Liu R, Zhang Q, Bartlam M. Acta Crystallogr F Struct Biol Commun 78 75-80 (2022)
  15. In-cell investigation of the conformational landscape of the GTPase UreG by SDSL-EPR. Pierro A, Tamburrini KC, Leguenno H, Gerbaud G, Etienne E, Guigliarelli B, Belle V, Zambelli B, Mileo E. iScience 26 107855 (2023)
  16. Experimental and in silico evaluation of Carthamus tinctorius L. oil emulgel: a promising treatment for bacterial skin infections. Saeed J, Hussain Shah SN, Javed H, Aslam A, Ali A, Siddique F, Zahra T, Bin Jardan YA, Wondmie GF, Nafidi HA, Bourhia M. Front Cell Infect Microbiol 13 1253095 (2023)
  17. Iron-Containing Ureases. Proshlyakov DA, Farrugia MA, Proshlyakov YD, Hausinger RP. Coord Chem Rev 448 214190 (2021)
  18. Synthesis, Urease Inhibition and Molecular Modelling Studies of Novel Derivatives of the Naturally Occurring β-Amyrenone. Bankeu JJK, Sattar H, Fongang YSF, Muhammadi SW, Simoben CV, Ntie-Kang F, Feuya GRT, Tchuenmogne MAT, Lateef M, Lenta BN, Ali MS, Ngouela AS. Nat Prod Bioprospect 9 49-59 (2019)


Reviews citing this publication (8)

  1. Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. de Reuse H, Vinella D, Cavazza C. Front Cell Infect Microbiol 3 94 (2013)
  2. Structure, function, and biosynthesis of nickel-dependent enzymes. Alfano M, Cavazza C. Protein Sci 29 1071-1089 (2020)
  3. The requirement for cobalt in vitamin B12: A paradigm for protein metalation. Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. Biochim Biophys Acta Mol Cell Res 1868 118896 (2021)
  4. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Rajakovich LJ, Balskus EP. Nat Prod Rep 36 593-625 (2019)
  5. Pathogenesis of Helicobacter pylori infection. de Bernard M, Josenhans C. Helicobacter 19 Suppl 1 11-18 (2014)
  6. Genomics of Urea Transport and Catabolism in Cyanobacteria: Biotechnological Implications. Veaudor T, Cassier-Chauvat C, Chauvat F. Front Microbiol 10 2052 (2019)
  7. Microbial nickel: cellular uptake and delivery to enzyme centers. Zeer-Wanklyn CJ, Zamble DB. Curr Opin Chem Biol 37 80-88 (2017)
  8. Nickel trafficking system responsible for urease maturation in Helicobacter pylori. Ge RG, Wang DX, Hao MC, Sun XS. World J Gastroenterol 19 8211-8218 (2013)

Articles citing this publication (33)

  1. The emerging role of urease as a general microbial virulence factor. Rutherford JC. PLoS Pathog 10 e1004062 (2014)
  2. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. Wang H, Yan A, Liu Z, Yang X, Xu Z, Wang Y, Wang R, Koohi-Moghadam M, Hu L, Xia W, Tang H, Wang Y, Li H, Sun H. PLoS Biol 17 e3000292 (2019)
  3. UreE-UreG complex facilitates nickel transfer and preactivates GTPase of UreG in Helicobacter pylori. Yang X, Li H, Lai TP, Sun H. J Biol Chem 290 12474-12485 (2015)
  4. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB. Sydor AM, Lebrette H, Ariyakumaran R, Cavazza C, Zamble DB. J Biol Chem 289 3828-3841 (2014)
  5. Genome Structure of the Opportunistic Pathogen Paracoccus yeei (Alphaproteobacteria) and Identification of Putative Virulence Factors. Lasek R, Szuplewska M, Mitura M, Decewicz P, Chmielowska C, Pawłot A, Sentkowska D, Czarnecki J, Bartosik D. Front Microbiol 9 2553 (2018)
  6. Visualization of a radical B12 enzyme with its G-protein chaperone. Jost M, Cracan V, Hubbard PA, Banerjee R, Drennan CL. Proc Natl Acad Sci U S A 112 2419-2424 (2015)
  7. Molecular landscape of the interaction between the urease accessory proteins UreE and UreG. Merloni A, Dobrovolska O, Zambelli B, Agostini F, Bazzani M, Musiani F, Ciurli S. Biochim Biophys Acta 1844 1662-1674 (2014)
  8. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN, Guigliarelli B, Belle V, Mileo E, Zambelli B. Sci Rep 7 5977 (2017)
  9. Ni²⁺ chemistry in pathogens--a possible target for eradication. Rowinska-Zyrek M, Zakrzewska-Czerwinska J, Zawilak-Pawlik A, Kozlowski H. Dalton Trans 43 8976-8989 (2014)
  10. The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. Myrach T, Zhu A, Witte CP. J Biol Chem 292 14556-14565 (2017)
  11. A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine. Liu Q, Chen Y, Yuan M, Du G, Chen J, Kang Z. Appl Environ Microbiol 83 e01258-17 (2017)
  12. A Structural Model of the Urease Activation Complex Derived from Ion Mobility-Mass Spectrometry and Integrative Modeling. Eschweiler JD, Farrugia MA, Dixit SM, Hausinger RP, Ruotolo BT. Structure 26 599-606.e3 (2018)
  13. The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. D'Urzo A, Santambrogio C, Grandori R, Ciurli S, Zambelli B. J Biol Inorg Chem 19 1341-1354 (2014)
  14. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. Li C, Huang P, Wong K, Xu Y, Tan L, Chen H, Lu Q, Luo C, Tam C, Zhu L, Su Z, Xie J. J Enzyme Inhib Med Chem 33 1362-1375 (2018)
  15. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase. Gregg CM, Goetzl S, Jeoung JH, Dobbek H. J Biol Chem 291 18129-18138 (2016)
  16. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. Miraula M, Ciurli S, Zambelli B. J Biol Inorg Chem 20 739-755 (2015)
  17. Modules of co-occurrence in the cyanobacterial pan-genome reveal functional associations between groups of ortholog genes. Beck C, Knoop H, Steuer R. PLoS Genet 14 e1007239 (2018)
  18. Bio-coordination of bismuth in Helicobacter pylori revealed by immobilized metal affinity chromatography. Wang Y, Tsang CN, Xu F, Kong PW, Hu L, Wang J, Chu IK, Li H, Sun H. Chem Commun (Camb) 51 16479-16482 (2015)
  19. Nickel Metalloregulators and Chaperones. Higgins K. Inorganics (Basel) 7 (2019)
  20. Pipeline for Targeted Meta-Proteomic Analyses to Assess the Diversity of Cattle Rumen Microbial Urease. Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Front Microbiol 11 573414 (2020)
  21. The Helicobacter pylori HypA·UreE2 Complex Contains a Novel High-Affinity Ni(II)-Binding Site. Hu HQ, Huang HT, Maroney MJ. Biochemistry 57 2932-2942 (2018)
  22. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits. Krajaejun T, Rujirawat T, Kanpanleuk T, Santanirand P, Lohnoo T, Yingyong W, Kumsang Y, Sae-Chew P, Kittichotirat W, Patumcharoenpol P. PeerJ 6 e4821 (2018)
  23. Structure of metallochaperone in complex with the cobalamin-binding domain of its target mutase provides insight into cofactor delivery. Vaccaro FA, Born DA, Drennan CL. Proc Natl Acad Sci U S A 120 e2214085120 (2023)
  24. The structure of the high-affinity nickel-binding site in the Ni,Zn-HypA•UreE2 complex. Zambelli B, Basak P, Hu H, Piccioli M, Musiani F, Broll V, Imbert L, Boisbouvier J, Maroney MJ, Ciurli S. Metallomics 15 mfad003 (2023)
  25. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Microbiol Spectr e0350822 (2023)
  26. Paracoccidioides lutzii Formamidase Contributes to Fungal Survival in Macrophages. Silva LOS, Moreira TR, Gonçales RA, Tomazett MV, Parente-Rocha JA, Mattos K, Paccez JD, Ruiz OH, Pereira M, Soares CMA, Weber SS, Cruz-Leite VRM, Borges CL. Microorganisms 10 2011 (2022)
  27. Biomineralization in Cave Bacteria-Popcorn and Soda Straw Crystal Formations, Morphologies, and Potential Metabolic Pathways. Koning K, McFarlane R, Gosse JT, Lawrence S, Carr L, Horne D, Van Wagoner N, Boddy CN, Cheeptham N. Front Microbiol 13 933388 (2022)
  28. Moving metals: How microbes deliver metal cofactors to metalloproteins. Kunkle DE, Skaar EP. Mol Microbiol 120 547-554 (2023)
  29. Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes. Martin-Diaconescu V, Joseph CA, Boer JL, Mulrooney SB, Hausinger RP, Maroney MJ. J Biol Inorg Chem 22 497-503 (2017)
  30. Novel Copper Oxide Bio-Nanocrystals to Target Outer Membrane Lectin of Vancomycin-Resistant Enterococcus faecium (VREfm): In Silico, Bioavailability, Antimicrobial, and Anticancer Potential. Kandeel M, Sharaf M, Hamad AM, O Babalghith A, Abdalla M, Arif M, Binsuwaidan R, G M Attallah N, Aladl Aladl Aladl H, Selim S, Jaremko M. Molecules 27 7957 (2022)
  31. Phenotypic Characterization and Draft Genome Sequence Analyses of Two Novel Endospore-Forming Sporosarcina spp. Isolated from Canada Goose (Branta canadensis) Feces. Keshri J, Smith KM, Svendsen MK, Keillor HR, Moss ML, Jordan HJ, Larkin AM, Garrish JK, Line JE, Ball PN, Oakley BB, Seal BS. Microorganisms 12 70 (2023)
  32. Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase. Vaccaro FA, Faber DA, Andree GA, Born DA, Kang G, Fonseca DR, Jost M, Drennan CL. J Biol Chem 299 105109 (2023)
  33. The exceptional form and function of the giant bacterium Ca. Epulopiscium viviparus revolves around its sodium motive force. Sannino DR, Arroyo FA, Pepe-Ranney C, Chen W, Volland JM, Elisabeth NH, Angert ER. Proc Natl Acad Sci U S A 120 e2306160120 (2023)