4hda Citations

A molecular mechanism for direct sirtuin activation by resveratrol.

Abstract

Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin's polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.

Reviews - 4hda mentioned but not cited (2)

  1. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Dai H, Sinclair DA, Ellis JL, Steegborn C. Pharmacol Ther 188 140-154 (2018)
  2. Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schürer SC. Front Pharmacol 9 1201 (2018)

Articles - 4hda mentioned but not cited (5)

  1. A molecular mechanism for direct sirtuin activation by resveratrol. Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, Steegborn C. PLoS One 7 e49761 (2012)
  2. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM. Genes Dev 29 1316-1325 (2015)
  3. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. You W, Zheng W, Weiss S, Chua KF, Steegborn C. Sci Rep 9 19176 (2019)
  4. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A. Gong L, Chen X, Liu C, Jin F, Hu Q. PLoS One 9 e96170 (2014)
  5. The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods. Luță EA, Biță A, Moroșan A, Mihaiescu DE, Ghica M, Mihai DP, Olaru OT, Deculescu-Ioniță T, Duțu LE, Popescu ML, Costea L, Nitulescu GM, Lupuliasa D, Boscencu R, Gîrd CE. Plants (Basel) 11 2398 (2022)


Reviews citing this publication (64)

  1. Epigenetics and aging. Pal S, Tyler JK. Sci Adv 2 e1600584 (2016)
  2. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Hubbard BP, Sinclair DA. Trends Pharmacol Sci 35 146-154 (2014)
  3. The effects of polyphenols and other bioactives on human health. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. Food Funct 10 514-528 (2019)
  4. The role of sirtuins in cardiac disease. Matsushima S, Sadoshima J. Am J Physiol Heart Circ Physiol 309 H1375-89 (2015)
  5. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression. Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, Fini M, Russo MA. Oxid Med Cell Longev 2016 3907147 (2016)
  6. Sirtuin deacetylases in neurodegenerative diseases of aging. Herskovits AZ, Guarente L. Cell Res 23 746-758 (2013)
  7. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  8. Effect of antioxidants supplementation on aging and longevity. Sadowska-Bartosz I, Bartosz G. Biomed Res Int 2014 404680 (2014)
  9. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Smoliga JM, Blanchard O. Molecules 19 17154-17172 (2014)
  10. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Kumar S, Lombard DB. Crit Rev Biochem Mol Biol 53 311-334 (2018)
  11. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. McSweeney KR, Gadanec LK, Qaradakhi T, Ali BA, Zulli A, Apostolopoulos V. Cancers (Basel) 13 1572 (2021)
  12. Resveratrol: A Focus on Several Neurodegenerative Diseases. Tellone E, Galtieri A, Russo A, Giardina B, Ficarra S. Oxid Med Cell Longev 2015 392169 (2015)
  13. Resveratrol and Ophthalmic Diseases. Abu-Amero KK, Kondkar AA, Chalam KV. Nutrients 8 200 (2016)
  14. Resveratrol and related stilbenes: their anti-aging and anti-angiogenic properties. Kasiotis KM, Pratsinis H, Kletsas D, Haroutounian SA. Food Chem Toxicol 61 112-120 (2013)
  15. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. Santos AL, Sinha S, Lindner AB. Oxid Med Cell Longev 2018 1941285 (2018)
  16. Metabolic effects of resveratrol: addressing the controversies. Bitterman JL, Chung JH. Cell Mol Life Sci 72 1473-1488 (2015)
  17. The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Jayasena T, Poljak A, Smythe G, Braidy N, Münch G, Sachdev P. Ageing Res Rev 12 867-883 (2013)
  18. Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Parihar P, Solanki I, Mansuri ML, Parihar MS. Exp Gerontol 61 130-141 (2015)
  19. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  20. The Roles of Sirtuin Family Proteins in Cancer Progression. Zhao E, Hou J, Ke X, Abbas MN, Kausar S, Zhang L, Cui H. Cancers (Basel) 11 E1949 (2019)
  21. Mitochondrial Sirtuins in Cancer: Emerging Roles and Therapeutic Potential. George J, Ahmad N. Cancer Res 76 2500-2506 (2016)
  22. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Tang PC, Ng YF, Ho S, Gyda M, Chan SW. Pharmacol Res 90 88-115 (2014)
  23. Human Skin Lightening Efficacy of Resveratrol and Its Analogs: From in Vitro Studies to Cosmetic Applications. Boo YC. Antioxidants (Basel) 8 E332 (2019)
  24. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits. Markoski MM, Garavaglia J, Oliveira A, Olivaes J, Marcadenti A. Nutr Metab Insights 9 51-57 (2016)
  25. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Gertz M, Steegborn C. Cell Mol Life Sci 73 2871-2896 (2016)
  26. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. Int J Mol Sci 22 5094 (2021)
  27. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Sándor S, Kubinyi E. Front Genet 10 948 (2019)
  28. New assays and approaches for discovery and design of Sirtuin modulators. Schutkowski M, Fischer F, Roessler C, Steegborn C. Expert Opin Drug Discov 9 183-199 (2014)
  29. Natural Products as Modulators of Sirtuins. Karaman Mayack B, Sippl W, Ntie-Kang F. Molecules 25 E3287 (2020)
  30. Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System. Chandramowlishwaran P, Vijay A, Abraham D, Li G, Mwangi SM, Srinivasan S. Front Neurosci 14 614331 (2020)
  31. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Int J Mol Sci 22 E630 (2021)
  32. Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets. Grootaert MOJ, Bennett MR. Nat Rev Cardiol 19 668-683 (2022)
  33. Role of sirtuins in bone biology: Potential implications for novel therapeutic strategies for osteoporosis. Li Q, Cheng JC, Jiang Q, Lee WY. Aging Cell 20 e13301 (2021)
  34. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Fang P, Guo M. Life (Basel) 5 1703-1725 (2015)
  35. Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Badiola I, Santaolalla F, Garcia-Gallastegui P, Ana SD, Unda F, Ibarretxe G. Ageing Res Rev 23 125-138 (2015)
  36. Metabolic Aspects of Adenosine Functions in the Brain. Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Front Pharmacol 12 672182 (2021)
  37. Proposed Tandem Effect of Physical Activity and Sirtuin 1 and 3 Activation in Regulating Glucose Homeostasis. Pacifici F, Di Cola D, Pastore D, Abete P, Guadagni F, Donadel G, Bellia A, Esposito E, Salimei C, Sinibaldi Salimei P, Ricordi C, Lauro D, Della-Morte D. Int J Mol Sci 20 E4748 (2019)
  38. An update on lysine deacylases targeting the expanding "acylome". Olsen CA. ChemMedChem 9 434-437 (2014)
  39. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J Struct Biol 196 534-542 (2016)
  40. The Pleiotropic Function of Human Sirtuins as Modulators of Metabolic Pathways and Viral Infections. Alqarni MH, Foudah AI, Muharram MM, Labrou NE. Cells 10 460 (2021)
  41. Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Int J Mol Sci 23 183 (2021)
  42. Endothelial Glycocalyx as a Regulator of Fibrotic Processes. Masola V, Zaza G, Arduini A, Onisto M, Gambaro G. Int J Mol Sci 22 2996 (2021)
  43. Aging: A cell source limiting factor in tissue engineering. Khorraminejad-Shirazi M, Dorvash M, Estedlal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. World J Stem Cells 11 787-802 (2019)
  44. Immunostimulants in respiratory diseases: focus on Pidotimod. Puggioni F, Alves-Correia M, Mohamed MF, Stomeo N, Mager R, Marinoni M, Racca F, Paoletti G, Varricchi G, Giorgis V, Melioli G, Canonica GW, Heffler E. Multidiscip Respir Med 14 31 (2019)
  45. Nutritional Regulators of Bcl-xL in the Brain. Park HA, Broman K, Stumpf A, Kazyak S, Jonas EA. Molecules 23 E3019 (2018)
  46. Chinese Medicine: A Hope for Neurodegenerative Diseases? Law BYK, Wu AG, Wang MJ, Zhu YZ. J Alzheimers Dis 60 S151-S160 (2017)
  47. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Reprod Med Biol 21 e12428 (2022)
  48. Insights on the Modulation of SIRT5 Activity: A Challenging Balance. Mori M, Cazzaniga G, Meneghetti F, Villa S, Gelain A. Molecules 27 4449 (2022)
  49. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Akan OD, Qin D, Guo T, Lin Q, Luo F. Foods 11 2955 (2022)
  50. Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Ahluwalia MK. Nutrients 14 5080 (2022)
  51. Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Mol Med Rep 27 35 (2023)
  52. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. Fiorentino F, Castiello C, Mai A, Rotili D. J Med Chem 65 9580-9606 (2022)
  53. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Cancer Res 81 4652-4667 (2021)
  54. Cancer metabolism challenges genomic instability and clonal evolution as therapeutic targets. Takeda Y, Chijimatsu R, Ofusa K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Cancer Sci 113 1097-1104 (2022)
  55. Histone deacetylase functions and therapeutic implications for adult skeletal muscle metabolism. Molinari S, Imbriano C, Moresi V, Renzini A, Belluti S, Lozanoska-Ochser B, Gigli G, Cedola A. Front Mol Biosci 10 1130183 (2023)
  56. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Demyanenko S, Dzreyan V, Sharifulina S. Biomedicines 9 1445 (2021)
  57. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes? Grzeczka A, Kordowitzki P. Nutrients 14 5101 (2022)
  58. Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Pop R, Daescu A, Rugina D, Pintea A. Antioxidants (Basel) 11 2447 (2022)
  59. The roles of sirtuins in ferroptosis. Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. Front Physiol 14 1131201 (2023)
  60. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Cells 12 852 (2023)
  61. Impact of Gut Microbiota in Brain Ageing: Polyphenols as Beneficial Modulators. Sarubbo F, Moranta D, Tejada S, Jiménez M, Esteban S. Antioxidants (Basel) 12 812 (2023)
  62. SIRT1 and thrombosis. Bettiol A, Urban ML, Emmi G, Galora S, Argento FR, Fini E, Borghi S, Bagni G, Mattioli I, Prisco D, Fiorillo C, Becatti M. Front Mol Biosci 10 1325002 (2023)
  63. Succinylation modification: a potential therapeutic target in stroke. Lian J, Liu W, Hu Q, Zhang X. Neural Regen Res 19 781-787 (2024)
  64. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. Int J Mol Sci 24 7876 (2023)

Articles citing this publication (78)

  1. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, Arbiser JL, Walker DI, Jones DP, Gius D, Gupta MP. Nat Commun 6 6656 (2015)
  2. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Proc Natl Acad Sci U S A 110 E2772-81 (2013)
  3. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Chen T, Li J, Liu J, Li N, Wang S, Liu H, Zeng M, Zhang Y, Bu P. Am J Physiol Heart Circ Physiol 308 H424-34 (2015)
  4. Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Tyshkovskiy A, Bozaykut P, Borodinova AA, Gerashchenko MV, Ables GP, Garratt M, Khaitovich P, Clish CB, Miller RA, Gladyshev VN. Cell Metab 30 573-593.e8 (2019)
  5. Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules. You W, Rotili D, Li TM, Kambach C, Meleshin M, Schutkowski M, Chua KF, Mai A, Steegborn C. Angew Chem Int Ed Engl 56 1007-1011 (2017)
  6. Sirt1 activation by resveratrol is substrate sequence-selective. Lakshminarasimhan M, Rauh D, Rauh D, Schutkowski M, Steegborn C. Aging (Albany NY) 5 151-154 (2013)
  7. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease. Ko SY, Ko HA, Chu KH, Shieh TM, Chi TC, Chen HI, Chang WC, Chang SS. PLoS One 10 e0143345 (2015)
  8. Modulators of HIF1α and NFkB in Cancer Treatment: Is it a Rational Approach for Controlling Malignant Progression? Tafani M, Pucci B, Russo A, Schito L, Pellegrini L, Perrone GA, Villanova L, Salvatori L, Ravenna L, Petrangeli E, Russo MA. Front Pharmacol 4 13 (2013)
  9. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes. Liang C, Curry BJ, Brown PL, Zemel MB. J Nutr Metab 2014 239750 (2014)
  10. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. Yu J, Wu Y, Yang P. J Neurochem 137 371-383 (2016)
  11. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice. Gueguen N, Desquiret-Dumas V, Leman G, Chupin S, Baron S, Nivet-Antoine V, Vessières E, Ayer A, Henrion D, Lenaers G, Reynier P, Procaccio V. PLoS One 10 e0144290 (2015)
  12. The p38α MAPK positively regulates osteoblast function and postnatal bone acquisition. Thouverey C, Caverzasio J. Cell Mol Life Sci 69 3115-3125 (2012)
  13. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism. Nguyen GT, Gertz M, Steegborn C. Chem Biol 20 1375-1385 (2013)
  14. Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. Bruckbauer A, Zemel MB. PLoS One 9 e89166 (2014)
  15. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Nguyen GT, Schaefer S, Gertz M, Weyand M, Steegborn C. Acta Crystallogr D Biol Crystallogr 69 1423-1432 (2013)
  16. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. de Oliveira MTP, de Sá Coutinho D, Tenório de Souza É, Stanisçuaski Guterres S, Pohlmann AR, Silva PMR, Martins MA, Bernardi A. Int J Nanomedicine 14 5215-5228 (2019)
  17. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters. Simic Z, Weiwad M, Schierhorn A, Steegborn C, Schutkowski M. Chembiochem 16 2337-2347 (2015)
  18. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Sidorova-Darmos E, Sommer R, Eubanks JH. Front Cell Neurosci 12 196 (2018)
  19. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, Zhang Y, Sun J, Bo Z, DePamphilis ML, Yen Y, Han Z, Zhu W. Oncogene 38 2364-2379 (2019)
  20. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins. Knyphausen P, de Boor S, Kuhlmann N, Scislowski L, Extra A, Baldus L, Schacherl M, Baumann U, Neundorf I, Lammers M. J Biol Chem 291 14677-14694 (2016)
  21. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. Gurt I, Artsi H, Cohen-Kfir E, Hamdani G, Ben-Shalom G, Feinstein B, El-Haj M, Dresner-Pollak R. PLoS One 10 e0134391 (2015)
  22. Identification of novel SIRT3 inhibitor scaffolds by virtual screening. Salo HS, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M. Bioorg Med Chem Lett 23 2990-2995 (2013)
  23. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Schuster S, Roessler C, Meleshin M, Zimmermann P, Simic Z, Kambach C, Schiene-Fischer C, Steegborn C, Hottiger MO, Schutkowski M. Sci Rep 6 22643 (2016)
  24. Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol. Lakshminarasimhan M, Curth U, Moniot S, Mosalaganti S, Raunser S, Steegborn C. Biosci Rep 33 e00037 (2013)
  25. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells. Zhang J, Meruvu S, Bedi YS, Chau J, Arguelles A, Rucker R, Choudhury M. Nutr Res 35 844-849 (2015)
  26. An examination of resveratrol's mechanisms of action in human tissue: impact of a single dose in vivo and dose responses in skeletal muscle ex vivo. Williams CB, Hughes MC, Edgett BA, Scribbans TD, Simpson CA, Perry CG, Gurd BJ. PLoS One 9 e102406 (2014)
  27. Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway. Wang Q, Sun X, Li X, Dong X, Li P, Zhao L. Mol Med Rep 11 151-158 (2015)
  28. Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Rimmelé P, Lofek-Czubek S, Ghaffari S. Am J Hematol 89 E235-8 (2014)
  29. Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, Zimmermann VS, Solary E, Dardalhon V, Dulić V, Taylor N. Sci Signal 10 eaal3024 (2017)
  30. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. Rowlands BD, Lau CL, Ryall JG, Thomas DS, Klugmann M, Beart PM, Rae CD. J Neurosci Res 93 1147-1156 (2015)
  31. Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Anna Malinowska M, Billet K, Drouet S, Munsch T, Unlubayir M, Tungmunnithum D, Giglioli-Guivarc'h N, Hano C, Lanoue A. Molecules 25 E2203 (2020)
  32. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Modi S, Yaluri N, Kokkola T, Laakso M. Sci Rep 7 17606 (2017)
  33. Selectivity hot-spots of sirtuin catalytic cores. Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Mol Biosyst 11 2263-2272 (2015)
  34. BET Inhibition Upregulates SIRT1 and Alleviates Inflammatory Responses. Kokkola T, Suuronen T, Pesonen M, Filippakopoulos P, Salminen A, Jarho EM, Lahtela-Kakkonen M, Lahtela-Kakkonen M. Chembiochem 16 1997-2001 (2015)
  35. Gestational diabetes induces alterations of sirtuins in fetal endothelial cells. Gui J, Potthast A, Rohrbach A, Borns K, Das AM, von Versen-Höynck F. Pediatr Res 79 788-798 (2016)
  36. A Stilbenoid Isorhapontigenin as a Potential Anti-Cancer Agent against Breast Cancer through Inhibiting Sphingosine Kinases/Tubulin Stabilization. Subedi L, Teli MK, Lee JH, Gaire BP, Kim MH, Kim SY. Cancers (Basel) 11 E1947 (2019)
  37. FoxO transcription factors 1 regulate mouse preimplantation embryo development. Kuscu N, Gungor-Ordueri NE, Sozen B, Adiguzel D, Celik-Ozenci C. J Assist Reprod Genet 36 2121-2133 (2019)
  38. Rejuvenation of adult stem cells: is age-associated dysfunction epigenetic? Mendelsohn AR, Larrick JW. Rejuvenation Res 16 152-157 (2013)
  39. Comment Resveratrol use in metabolic syndrome. Bremer AA. Metab Syndr Relat Disord 12 493-495 (2014)
  40. SIRT1 increases cardiomyocyte binucleation in the heart development. Shin AN, Han L, Dasgupta C, Huang L, Yang S, Zhang L. Oncotarget 9 7996-8010 (2018)
  41. Sirt3 suppresses calcium oxalate-induced renal tubular epithelial cell injury via modification of FoxO3a-mediated autophagy. Peng Y, Yang C, Shi X, Li L, Dong H, Liu C, Fang Z, Wang Z, Ming S, Liu M, Xie B, Gao X, Sun Y. Cell Death Dis 10 34 (2019)
  42. Sirtuin Family Members Selectively Regulate Autophagy in Osteosarcoma and Mesothelioma Cells in Response to Cellular Stress. Garva R, Thepmalee C, Yasamut U, Sudsaward S, Guazzelli A, Rajendran R, Tongmuang N, Khunchai S, Meysami P, Limjindaporn T, Yenchitsomanus PT, Mutti L, Krstic-Demonacos M, Demonacos C. Front Oncol 9 949 (2019)
  43. AROS has a context-dependent effect on SIRT1. Kokkola T, Suuronen T, Molnár F, Määttä J, Salminen A, Jarho EM, Lahtela-Kakkonen M. FEBS Lett 588 1523-1528 (2014)
  44. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation. Gidfar S, Afsharkhamseh N, Sanjari S, Djalilian AR. Invest Ophthalmol Vis Sci 57 859-865 (2016)
  45. Quercetin 3,5,7,3',4'-pentamethyl ether from Kaempferia parviflora directly and effectively activates human SIRT1. Zhang M, Lu P, Terada T, Sui M, Furuta H, Iida K, Katayama Y, Lu Y, Okamoto K, Suzuki M, Asakura T, Shimizu K, Hakuno F, Takahashi SI, Shimada N, Yang J, Ishikawa T, Tatsuzaki J, Nagata K. Commun Biol 4 209 (2021)
  46. Resveratrol induces insulin gene expression in mouse pancreatic α-cells. Xie S, Sinha RA, Singh BK, Li GD, Han W, Yen PM. Cell Biosci 3 47 (2013)
  47. Resveratrol-Coated Balloon Catheters in Porcine Coronary and Peripheral Arteries. Kamann S, Haase T, Stolzenburg N, Löchel M, Peters D, Schnorr J. Int J Mol Sci 20 E2285 (2019)
  48. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes. Singh AK, Garg G, Singh S, Rizvi SI. Rejuvenation Res 20 420-429 (2017)
  49. Combined Inhibition of Specific Sirtuins as a Potential Strategy to Inhibit Melanoma Growth. Singh CK, Panackal JE, Siddiqui S, Ahmad N, Nihal M. Front Oncol 10 591972 (2020)
  50. Synthesis and Assay of SIRT1-Activating Compounds. Dai H, Ellis JL, Sinclair DA, Hubbard BP. Methods Enzymol 574 213-244 (2016)
  51. The plasticizer BBP selectively inhibits epigenetic regulator sirtuins. Zhang J, Ali HI, Bedi YS, Choudhury M. Toxicology 338 130-141 (2015)
  52. Antioxidant Supplementation Hinders the Role of Exercise Training as a Natural Activator of SIRT1. Sellitto C, Corbi G, Stefanelli B, Manzo V, Trucillo M, Charlier B, Mensitieri F, Izzo V, Lucariello A, Perna A, Guerra G, De Luca A, Filippelli A, Conti V. Nutrients 14 2092 (2022)
  53. Potent and Specific Activators for Mitochondrial Sirtuins Sirt3 and Sirt5. Suenkel B, Valente S, Zwergel C, Weiss S, Di Bello E, Fioravanti R, Aventaggiato M, Amorim JA, Garg N, Kumar S, Lombard DB, Hu T, Singh PK, Tafani M, Palmeira CM, Sinclair D, Mai A, Steegborn C. J Med Chem 65 14015-14031 (2022)
  54. Resveratrol induces H3 and H4K16 deacetylation and H2A.X phosphorylation in Toxoplasma gondii. Contreras SM, Ganuza A, Corvi MM, Angel SO. BMC Res Notes 14 19 (2021)
  55. Sirtuin 3: A major control point for obesity-related metabolic diseases? Newsom SA, Boyle KE, Friedman JE. Drug Discov Today Dis Mech 10 e35-e40 (2013)
  56. Design, Synthesis, and Biological Evaluation of 8-Mercapto-3,7-Dihydro-1H-Purine-2,6-Diones as Potent Inhibitors of SIRT1, SIRT2, SIRT3, and SIRT5. Han H, Li C, Li M, Yang L, Zhao S, Wang Z, Liu H, Liu D. Molecules 25 E2755 (2020)
  57. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase. Gerszon J, Serafin E, Buczkowski A, Michlewska S, Bielnicki JA, Rodacka A. PLoS One 13 e0190656 (2018)
  58. Generation of carbamoyl phosphate synthetase 1 reporter cell lines for the assessment of ammonia metabolism. Wang Y, Chang L, Zhai J, Wu Q, Wang D, Wang Y. J Cell Mol Med 21 3214-3223 (2017)
  59. Resistance exercise promotes the resolution and recanalization of deep venous thrombosis in a mouse model via SIRT1 upregulation. Wu C, Li X, Zhao H, Ling Y, Ying Y, He Y, Zhang S, Liang S, Wei J, Gan X. BMC Cardiovasc Disord 23 18 (2023)
  60. SEAP activity serves for demonstrating ER stress induction by glucolipotoxicity as well as testing ER stress inhibitory potential of therapeutic agents. Lenin R, Mohan V, Balasubramanyam M. Mol Cell Biochem 404 271-279 (2015)
  61. SULFATION PATHWAYS: Potential benefits of a sulfated resveratrol derivative for topical application. Correia-da-Silva M, Rocha V, Marques C, Deus CM, Marques-Carvalho A, Oliveira PJ, Palmeira A, Pinto M, Sousa E, Sousa Lobo JM, Almeida IF. J Mol Endocrinol 61 M27-M39 (2018)
  62. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. RSC Adv 11 25738-25751 (2021)
  63. Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells. Chen X, Zheng L, Zhang B, Deng Z, Li H. Curr Res Food Sci 5 1985-1993 (2022)
  64. Anti-diabetic activity of fused PPARγ-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. Pirat C, Dacquet C, Leclerc V, Hennuyer N, Beucher-Gaudin M, Zanirato G, Géant A, Staels B, Ktorza A, Farce A, Caignard DH, Berthelot P, Lebegue N. Eur J Med Chem 137 310-326 (2017)
  65. Elucidating the tunability of binding behavior for the MERS-CoV macro domain with NAD metabolites. Lin MH, Cho CC, Chiu YC, Chien CY, Huang YP, Chang CF, Hsu CH. Commun Biol 4 123 (2021)
  66. Fragment-derived modulators of an industrial β-glucosidase. Makraki E, Darby JF, Carneiro MG, Firth JD, Heyam A, Ab E, O'Brien P, Siegal G, Hubbard RE. Biochem J 477 4383-4395 (2020)
  67. Functional characterization of Candida albicans Hos2 histone deacetylase. Karthikeyan G, Paul-Satyaseela M, Dhatchana Moorthy N, Gopalaswamy R, Narayanan S. F1000Res 2 238 (2013)
  68. The role of SIRT5 and p53 proteins in the sensitivity of colon cancer cells to chemotherapeutic agent 5-Fluorouracil. Ekremoglu O, Koc A. Mol Biol Rep 48 5485-5495 (2021)
  69. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Int J Mol Sci 24 9363 (2023)
  70. Investigation of molecular mechanisms of experimental compounds in murine models of chronic allergic airways disease using synchrotron Fourier-transform infrared microspectroscopy. Mazarakis N, Vongsvivut J, Bambery KR, Ververis K, Tobin MJ, Royce SG, Samuel CS, Snibson KJ, Licciardi PV, Karagiannis TC. Sci Rep 10 11713 (2020)
  71. Molecular Mechanism of Sirtuin 1 Modulation by the AROS Protein. Weiss S, Adolph RS, Schweimer K, DiFonzo A, Meleshin M, Schutkowski M, Steegborn C. Int J Mol Sci 23 12764 (2022)
  72. Novel Thiazole-Based SIRT2 Inhibitors Discovered via Molecular Modelling Studies and Enzymatic Assays. Abbotto E, Casini B, Piacente F, Scarano N, Cerri E, Tonelli M, Astigiano C, Millo E, Sturla L, Bruzzone S, Cichero E. Pharmaceuticals (Basel) 16 1316 (2023)
  73. Resveratrol rescues cutaneous radiation-induced DNA damage via a novel AMPK/SIRT7/HMGB1 regulatory axis. Jin Y, Liu X, Liang X, Liu J, Liu J, Han Z, Lu Q, Wang K, Meng B, Zhang C, Xu M, Guan J, Ma L, Zhou L. Cell Death Dis 13 847 (2023)
  74. Synthetic Enzymology and the Fountain of Youth: Repurposing Biology for Longevity. Lim YP, Go MK, Raida M, Inoue T, Wenk MR, Keasling JD, Chang MW, Yew WS. ACS Omega 3 11050-11061 (2018)
  75. Transthyretin Binding Mode Dichotomy of Fluorescent trans-Stilbene Ligands. Begum A, Zhang J, Derbyshire D, Wu X, Konradsson P, Hammarström P, von Castelmur E. ACS Chem Neurosci 14 820-828 (2023)
  76. Effect of Resveratrol, L-Carnitine, and Aromatic Amino Acid Supplements on the Trace Element Content in the Organs of Mice with Dietary-Induced Obesity. Shumakova AA, Shipelin VA, Leontyeva EV, Gmoshinski IV. Biol Trace Elem Res 200 281-297 (2022)
  77. Interactive Effects of Swimming High-Intensity Interval Training and Resveratrol Supplementation Improve Mitochondrial Protein Levels in the Hippocampus of Aged Rats. Amirazodi M, Daryanoosh F, Mehrabi A, Gaeini A, Koushkie Jahromi M, Salesi M, Zarifkar AH. Biomed Res Int 2022 8638714 (2022)
  78. Sirtuin1, not NAMPT, possesses anti-inflammatory effects in epicardial, pericardial and subcutaneous adipose tissue in patients with CHD. Opstad TB, Papotti B, Åkra S, Hansen CH, Braathen B, Tønnessen T, Solheim S, Seljeflot I. J Transl Med 21 644 (2023)