4h03 Citations

Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex.

Proc Natl Acad Sci U S A 110 4267-72 (2013)
Related entries: 4gy2, 4h0t, 4h0v, 4h0x, 4h0y

Cited: 53 times
EuropePMC logo PMID: 23382240

Abstract

Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD(+) analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD(+)-bound form (NAD(+)-Ia-actin) and the ADP ribosylated form [Ia-ADP ribosylated (ADPR)-actin] remain unclear. Accidentally, we found that ethylene glycol as cryo-protectant inhibits ADP ribosylation and crystallized the NAD(+)-Ia-actin complex. Here we report high-resolution structures of NAD(+)-Ia-actin and Ia-ADPR-actin obtained by soaking apo-Ia-actin crystal with NAD(+) under different conditions. The structures of NAD(+)-Ia-actin and Ia-ADPR-actin represent the pre- and postreaction states, respectively. By assigning the βTAD-Ia-actin structure to the transition state, the strain-alleviation model of ADP ribosylation, which we proposed previously, is experimentally confirmed and improved. Moreover, this reaction mechanism appears to be applicable not only to Ia but also to other ADP ribosyltransferases.

Reviews - 4h03 mentioned but not cited (2)

Articles - 4h03 mentioned but not cited (11)

  1. Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-García B, Bates PA, Fernandez-Recio J, Bonvin AM, Weng Z. J Mol Biol 427 3031-3041 (2015)
  2. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H. Proc Natl Acad Sci U S A 110 4267-4272 (2013)
  3. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Akturk A, Wasilko DJ, Wu X, Liu Y, Zhang Y, Qiu J, Luo ZQ, Reiter KH, Brzovic PS, Klevit RE, Mao Y. Nature 557 729-733 (2018)
  4. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure. Toda A, Tsurumura T, Yoshida T, Tsumori Y, Tsuge H. J Biol Chem 290 19423-19432 (2015)
  5. Convergent Evolution in Breadth of Two VH6-1-Encoded Influenza Antibody Clonotypes from a Single Donor. Wu NC, Andrews SF, Raab JE, O'Connell S, Schramm CA, Ding X, Chambers MJ, Leung K, Wang L, Zhang Y, Mascola JR, Douek DC, Ledgerwood JE, McDermott AB, Wilson IA. Cell Host Microbe 28 434-444.e4 (2020)
  6. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  7. Crystal structure of bacterial cytotoxic necrotizing factor CNFY reveals molecular building blocks for intoxication. Chaoprasid P, Lukat P, Mühlen S, Heidler T, Gazdag EM, Dong S, Bi W, Rüter C, Kirchenwitz M, Steffen A, Steffen A, Jänsch L, Stradal TEB, Dersch P, Blankenfeldt W. EMBO J 40 e105202 (2021)
  8. Enhanced sampling of protein conformational states for dynamic cross-docking within the protein-protein docking server SwarmDock. Torchala M, Gerguri T, Chaleil RAG, Gordon P, Russell F, Keshani M, Bates PA. Proteins 88 962-972 (2020)
  9. Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. Toniti W, Yoshida T, Tsurumura T, Irikura D, Monma C, Kamata Y, Tsuge H. PLoS One 12 e0171278 (2017)
  10. Enhanced Molecular Dynamics Method to Efficiently Increase the Discrimination Capability of Computational Protein-Protein Docking. Scafuri N, Soler MA, Spitaleri A, Rocchia W. J Chem Theory Comput 17 7271-7280 (2021)
  11. Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Hinger I, Ansorge R, Mussmann M, Romano S. Appl Environ Microbiol 86 e02395-19 (2020)


Reviews citing this publication (9)

  1. Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Puvar K, Luo ZQ, Das C. Trends Biochem Sci 44 467-477 (2019)
  2. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin. Takehara M, Takagishi T, Seike S, Oda M, Sakaguchi Y, Hisatsune J, Ochi S, Kobayashi K, Nagahama M. Toxins (Basel) 9 E247 (2017)
  3. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Mills A, Gago F. Int J Mol Sci 22 6973 (2021)
  4. Mechanistic overview of ADP-ribosylation reactions. Sung VM. Biochimie 113 35-46 (2015)
  5. Targeting ADP-ribosylation as an antimicrobial strategy. Catara G, Corteggio A, Valente C, Grimaldi G, Palazzo L. Biochem Pharmacol 167 13-26 (2019)
  6. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop. Tsuge H, Yoshida T, Tsurumura T. Pathog Dis 73 ftv094 (2015)
  7. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. Iyer S, Das C. J Biol Chem 297 101340 (2021)
  8. Regulation of Biomolecular Condensates by Poly(ADP-ribose). Rhine K, Odeh HM, Shorter J, Myong S. Chem Rev 123 9065-9093 (2023)
  9. Cellular Uptake and Cytotoxicity of Clostridium perfringens Iota-Toxin. Nagahama M, Takehara M, Seike S, Sakaguchi Y. Toxins (Basel) 15 695 (2023)

Articles citing this publication (31)

  1. Structural basis of ubiquitin modification by the Legionella effector SdeA. Dong Y, Mu Y, Xie Y, Zhang Y, Han Y, Zhou Y, Wang W, Liu Z, Wu M, Wang H, Pan M, Xu N, Xu CQ, Yang M, Fan S, Deng H, Tan T, Liu X, Liu L, Li J, Wang J, Fang X, Feng Y. Nature 557 674-678 (2018)
  2. Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. Lyons B, Ravulapalli R, Lanoue J, Lugo MR, Dutta D, Carlin S, Merrill AR. J Biol Chem 291 11198-11215 (2016)
  3. ADP-ribosylation: from molecular mechanisms to human disease. Hoch NC, Polo LM. Genet Mol Biol 43 e20190075 (2019)
  4. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks. Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, Horiguchi Y, Yoshinari T, Sugita-Konishi Y, Kamata Y. PLoS One 10 e0138183 (2015)
  5. Towards the application of Tc toxins as a universal protein translocation system. Roderer D, Schubert E, Sitsel O, Raunser S. Nat Commun 10 5263 (2019)
  6. ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Piscotta FJ, Jeffrey PD, Link AJ. Proc Natl Acad Sci U S A 116 826-834 (2019)
  7. Structure-function analyses of a pertussis-like toxin from pathogenic Escherichia coli reveal a distinct mechanism of inhibition of trimeric G-proteins. Littler DR, Ang SY, Moriel DG, Kocan M, Kleifeld O, Johnson MD, Tran MT, Paton AW, Paton JC, Summers RJ, Schembri MA, Rossjohn J, Beddoe T. J Biol Chem 292 15143-15158 (2017)
  8. Structures of neutrophil serine protease 4 reveal an unusual mechanism of substrate recognition by a trypsin-fold protease. Lin SJ, Dong KC, Eigenbrot C, van Lookeren Campagne M, Kirchhofer D. Structure 22 1333-1340 (2014)
  9. Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex. Yamada T, Yoshida T, Kawamoto A, Mitsuoka K, Iwasaki K, Tsuge H. Nat Struct Mol Biol 27 288-296 (2020)
  10. Substrate N2 atom recognition mechanism in pierisin family DNA-targeting, guanine-specific ADP-ribosyltransferase ScARP. Yoshida T, Tsuge H. J Biol Chem 293 13768-13774 (2018)
  11. Biomimetic α-selective ribosylation enables two-step modular synthesis of biologically important ADP-ribosylated peptides. Zhu A, Li X, Bai L, Zhu G, Guo Y, Lin J, Cui Y, Tian G, Zhang L, Wang J, Li XD, Li L. Nat Commun 11 5600 (2020)
  12. Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens Iota Toxin. Belyy A, Tabakova I, Lang AE, Jank T, Belyi Y, Aktories K. PLoS One 10 e0145708 (2015)
  13. Strain-alleviation model of ADP-ribosylation. Jank T, Aktories K. Proc Natl Acad Sci U S A 110 4163-4164 (2013)
  14. Interaction of Clostridium perfringens Iota Toxin and Lipolysis-Stimulated Lipoprotein Receptor (LSR). Nagahama M, Takehara M, Kobayashi K. Toxins (Basel) 10 E405 (2018)
  15. The effects of MIBG on the invasive properties of HepG2 hepatocellular carcinoma cells. Su Y, Guan XQ, Liu FQ, Wang YL. Int J Mol Med 34 842-848 (2014)
  16. A mutational analysis of residues in cholera toxin A1 necessary for interaction with its substrate, the stimulatory G protein Gsα. Jobling MG, Gotow LF, Yang Z, Holmes RK. Toxins (Basel) 7 919-935 (2015)
  17. Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Kawahara K, Yonogi S, Munetomo R, Oki H, Yoshida T, Kumeda Y, Matsuda S, Kodama T, Ohkubo T, Iida T, Nakamura S. Biochem Biophys Res Commun 480 261-267 (2016)
  18. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Tremblay O, Thow Z, Merrill AR. Toxins (Basel) 12 E792 (2020)
  19. Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin. Belyy A, Lindemann F, Roderer D, Funk J, Bardiaux B, Protze J, Bieling P, Oschkinat H, Raunser S. Nat Commun 13 4202 (2022)
  20. Rounding Out the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers. Smith H, Pinkerton N, Heisler DB, Kudryashova E, Hall AR, Karch KR, Norris A, Wysocki V, Sotomayor M, Reisler E, Vavylonis D, Kudryashov DS. Int J Mol Sci 22 E718 (2021)
  21. 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile. Roth BM, Godoy-Ruiz R, Varney KM, Rustandi RR, Weber DJ. Biomol NMR Assign 10 213-217 (2016)
  22. ADP-Ribosylargininyl reaction of cholix toxin is mediated through diffusible intermediates. Sung VM, Tsai CL. BMC Biochem 15 26 (2014)
  23. ADPRtool: A novel predicting model for identification of ASP-ADP-Ribosylation sites of human proteins. Liu J, Han J, Lv H. J Bioinform Comput Biol 13 1550015 (2015)
  24. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin. Nagahama M, Takehara M, Miyamoto K, Ishidoh K, Kobayashi K. Toxins (Basel) 10 (2018)
  25. An Enterotoxin-Like Binary Protein from Pseudomonas protegens with Potent Nematicidal Activity. Wei JZ, Siehl DL, Hou Z, Rosen B, Oral J, Taylor CG, Wu G. Appl Environ Microbiol 83 e00942-17 (2017)
  26. Cathepsin Release from Lysosomes Promotes Endocytosis of Clostridium perfringens Iota-Toxin. Nagahama M, Kobayashi K, Takehara M. Toxins (Basel) 13 721 (2021)
  27. Crystal structures of pertussis toxin with NAD+ and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity. Sakari M, Tran MT, Rossjohn J, Pulliainen AT, Beddoe T, Littler DR. J Biol Chem 298 101892 (2022)
  28. Novel secreted STPKLRR from Vibrio splendidus AJ01 promotes pathogen internalization via mediating tropomodulin phosphorylation dependent cytoskeleton rearrangement. Dai F, Guo M, Shao Y, Li C. PLoS Pathog 19 e1011419 (2023)
  29. Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis. Hou Y, Zeng H, Li Z, Feng N, Meng F, Xu Y, Li L, Shao F, Ding J. Nat Struct Mol Biol 30 261-272 (2023)
  30. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. Papatheodorou P, Minton NP, Aktories K, Barth H. Adv Exp Med Biol 1435 219-247 (2024)
  31. Molecular basis of threonine ADP-ribosylation of ubiquitin by bacterial ARTs. Tan J, Xu Y, Wang X, Yan F, Xian W, Liu X, Chen Y, Zhu Y, Zhou Y. Nat Chem Biol (2023)