4gqb Citations

Crystal structure of the human PRMT5:MEP50 complex.

Reviews - 4gqb mentioned but not cited (9)

  1. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Stopa N, Krebs JE, Shechter D. Cell. Mol. Life Sci. 72 2041-2059 (2015)
  2. Chemical biology of protein arginine modifications in epigenetic regulation. Fuhrmann J, Clancy KW, Thompson PR. Chem. Rev. 115 5413-5461 (2015)
  3. An evolving understanding of nuclear receptor coregulator proteins. Millard CJ, Watson PJ, Fairall L, Schwabe JW. J. Mol. Endocrinol. 51 T23-36 (2013)
  4. Structural biology and chemistry of protein arginine methyltransferases. Schapira M, Ferreira de Freitas R. Medchemcomm 5 1779-1788 (2014)
  5. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Tewary SK, Zheng YG, Ho MC. Cell Mol Life Sci 76 2917-2932 (2019)
  6. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Expert Opin. Ther. Targets 22 527-545 (2018)
  7. Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Gupta S, Kadumuri RV, Singh AK, Chavali S, Dhayalan A. Life (Basel) 11 951 (2021)
  8. The Structure and Functions of PRMT5 in Human Diseases. Motolani A, Martin M, Sun M, Lu T. Life (Basel) 11 1074 (2021)
  9. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Ferreira de Freitas R, Ivanochko D, Schapira M. Molecules 24 (2019)

Articles - 4gqb mentioned but not cited (35)

  1. Crystal structure of the human PRMT5:MEP50 complex. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S. Proc. Natl. Acad. Sci. U.S.A. 109 17960-17965 (2012)
  2. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. Ho MC, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, Carter LG, Onikubo T, Kumar PR, Chan MK, Brenowitz M, Cheng RH, Reimer U, Almo SC, Shechter D. PLoS ONE 8 e57008 (2013)
  3. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Alinari L, Mahasenan KV, Yan F, Karkhanis V, Chung JH, Smith EM, Quinion C, Smith PL, Kim L, Patton JT, Lapalombella R, Yu B, Wu Y, Roy S, De Leo A, Pileri S, Agostinelli C, Ayers L, Bradner JE, Chen-Kiang S, Elemento O, Motiwala T, Majumder S, Byrd JC, Jacob S, Sif S, Li C, Baiocchi RA. Blood 125 2530-2543 (2015)
  4. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, Lan L, Bahar I, Wan Y. Nat Commun 6 8419 (2015)
  5. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. Hadjikyriacou A, Yang Y, Espejo A, Bedford MT, Clarke SG. J. Biol. Chem. 290 16723-16743 (2015)
  6. Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. Yan L, Yan C, Qian K, Su H, Kofsky-Wofford SA, Lee WC, Zhao X, Ho MC, Ivanov I, Zheng YG. J. Med. Chem. 57 2611-2622 (2014)
  7. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U, Shechter D. J. Biol. Chem. 290 9674-9689 (2015)
  8. The E3 ubiquitin ligase CHIP mediates ubiquitination and proteasomal degradation of PRMT5. Zhang HT, Zeng LF, He QY, Tao WA, Zha ZG, Hu CD. Biochim. Biophys. Acta 1863 335-346 (2016)
  9. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. Wang C, Zhu Y, Chen J, Li X, Peng J, Chen J, Zou Y, Zhang Z, Jin H, Yang P, Wu J, Niu L, Gong Q, Teng M, Shi Y. PLoS ONE 9 e87267 (2014)
  10. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Debler EW, Jain K, Warmack RA, Feng Y, Clarke SG, Blobel G, Stavropoulos P. Proc. Natl. Acad. Sci. U.S.A. 113 2068-2073 (2016)
  11. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis. Webb LM, Amici SA, Jablonski KA, Savardekar H, Panfil AR, Li L, Zhou W, Peine K, Karkhanis V, Bachelder EM, Ainslie KM, Green PL, Li C, Baiocchi RA, Guerau-de-Arellano M. J. Immunol. 198 1439-1451 (2017)
  12. Structural basis for substrate recognition by the human N-terminal methyltransferase 1. Dong C, Mao Y, Tempel W, Qin S, Li L, Loppnau P, Huang R, Min J. Genes Dev. 29 2343-2348 (2015)
  13. A thorough anion-π interaction study in biomolecules: on the importance of cooperativity effects. Lucas X, Bauzá A, Frontera A, Quiñonero D. Chem Sci 7 1038-1050 (2016)
  14. Structural basis for Sfm1 functioning as a protein arginine methyltransferase. Lv F, Zhang T, Zhou Z, Gao S, Wong CC, Zhou JQ, Ding J. Cell Discov 1 15037 (2015)
  15. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Jain K, Jin CY, Clarke SG. Proc. Natl. Acad. Sci. U.S.A. 114 10101-10106 (2017)
  16. Structural basis of arginine asymmetrical dimethylation by PRMT6. Wu H, Zheng W, Eram MS, Vhuiyan M, Dong A, Zeng H, He H, Brown P, Frankel A, Vedadi M, Luo M, Min J. Biochem. J. 473 3049-3063 (2016)
  17. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations. Yue Y, Chu Y, Guo H. Molecules 20 10032-10046 (2015)
  18. Deep Neural Network Classifier for Virtual Screening Inhibitors of (S)-Adenosyl-L-Methionine (SAM)-Dependent Methyltransferase Family. Li F, Wan X, Xing J, Tan X, Li X, Wang Y, Zhao J, Wu X, Liu X, Li Z, Luo X, Lu W, Zheng M. Front Chem 7 324 (2019)
  19. Molecular basis for substrate recruitment to the PRMT5 methylosome. Mulvaney KM, Blomquist C, Acharya N, Li R, Ranaghan MJ, O'Keefe M, Rodriguez DJ, Young MJ, Kesar D, Pal D, Stokes M, Nelson AJ, Jain SS, Yang A, Mullin-Bernstein Z, Columbus J, Bozal FK, Skepner A, Raymond D, LaRussa S, McKinney DC, Freyzon Y, Baidi Y, Porter D, Aguirre AJ, Ianari A, McMillan B, Sellers WR. Mol Cell 81 3481-3495.e7 (2021)
  20. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Scheer S, Ackloo S, Medina TS, Schapira M, Li F, Ward JA, Lewis AM, Northrop JP, Richardson PL, Kaniskan HÜ, Shen Y, Liu J, Smil D, McLeod D, Zepeda-Velazquez CA, Luo M, Jin J, Barsyte-Lovejoy D, Huber KVM, De Carvalho DD, Vedadi M, Zaph C, Brown PJ, Arrowsmith CH. Nat Commun 10 19 (2019)
  21. Biochemical Investigation of the Interaction of pICln, RioK1 and COPR5 with the PRMT5-MEP50 Complex. Krzyzanowski A, Gasper R, Adihou H, Hart P', Waldmann H. Chembiochem 22 1908-1914 (2021)
  22. Germ-line mutations in WDR77 predispose to familial papillary thyroid cancer. Zhao Y, Yu T, Sun J, Wang F, Cheng C, He S, Chen L, Xie D, Fu L, Guan X, Yan A, Li Y, Miao G, Zhu X. Proc Natl Acad Sci U S A 118 e2026327118 (2021)
  23. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  24. A Chemical Probe for the Methyl Transferase PRMT5 with a Novel Binding Mode. Pande V, Sun W, Beke L, Berthelot D, Brehmer D, Brown D, Corbera J, Irving S, Meerpoel L, Nys T, Parade M, Robinson C, Sommen C, Viellevoye M, Wu T, Thuring JW. ACS Med Chem Lett 11 2227-2231 (2020)
  25. Rapid protein stability prediction using deep learning representations. Blaabjerg LM, Kassem MM, Good LL, Jonsson N, Cagiada M, Johansson KE, Boomsma W, Stein A, Lindorff-Larsen K. Elife 12 e82593 (2023)
  26. A hotspot for posttranslational modifications on the androgen receptor dimer interface drives pathology and anti-androgen resistance. Alegre-Martí A, Jiménez-Panizo A, Martínez-Tébar A, Poulard C, Peralta-Moreno MN, Abella M, Antón R, Chiñas M, Eckhard U, Piulats JM, Rojas AM, Fernández-Recio J, Rubio-Martínez J, Le Romancer M, Aytes Á, Fuentes-Prior P, Estébanez-Perpiñá E. Sci Adv 9 eade2175 (2023)
  27. A type II protein arginine methyltransferase regulates merozoite invasion in Plasmodium falciparum. Lucky AB, Wang C, Liu M, Liang X, Min H, Fan Q, Siddiqui FA, Adapa SR, Li X, Jiang RHY, Chen X, Cui L, Miao J. Commun Biol 6 659 (2023)
  28. Cryo-EM structure-based selection of computed ligand poses enables design of MTA-synergic PRMT5 inhibitors of better potency. Zhou W, Yadav GP, Yang X, Qin F, Li C, Jiang QX. Commun Biol 5 1054 (2022)
  29. Cryo-electron microscopy structure of a human PRMT5:MEP50 complex. Timm DE, Bowman V, Madsen R, Rauch C. PLoS ONE 13 e0193205 (2018)
  30. Development of Macrocyclic PRMT5-Adaptor Protein Interaction Inhibitors. Krzyzanowski A, Esser LM, Willaume A, Prudent R, Peter C, 't Hart P, Waldmann H. J Med Chem 65 15300-15311 (2022)
  31. Glutathionylation Decreases Methyltransferase Activity of PRMT5 and Inhibits Cell Proliferation. Yi M, Ma Y, Chen Y, Liu C, Wang Q, Deng H. Mol Cell Proteomics 19 1910-1920 (2020)
  32. PRMT5 promotes DNA repair through methylation of 53BP1 and is regulated by Src-mediated phosphorylation. Hwang JW, Kim SN, Myung N, Song D, Han G, Bae GU, Bedford MT, Kim YK. Commun Biol 3 428 (2020)
  33. Protein Arginine Methyltransferase 5 (PRMT5) Mutations in Cancer Cells. Rasheed S, Bouley RA, Yoder RJ, Petreaca RC. Int J Mol Sci 24 6042 (2023)
  34. Synthesis and Activity of Triazole-Adenosine Analogs as Protein Arginine Methyltransferase 5 Inhibitors. Brown T, Cao M, Zheng YG. Molecules 27 3779 (2022)
  35. The Structural Effects of Phosphorylation of Protein Arginine Methyltransferase 5 on Its Binding to Histone H4. Börzsei R, Bayarsaikhan B, Zsidó BZ, Lontay B, Hetényi C. Int J Mol Sci 23 11316 (2022)


Reviews citing this publication (30)

  1. Arginine Methylation: The Coming of Age. Blanc RS, Richard S. Mol. Cell 65 8-24 (2017)
  2. Signaling through cyclin D-dependent kinases. Choi YJ, Anders L. Oncogene 33 1890-1903 (2014)
  3. Protein arginine methylation of non-histone proteins and its role in diseases. Wei H, Mundade R, Lange KC, Lu T. Cell Cycle 13 32-41 (2014)
  4. Readers of histone methylarginine marks. Gayatri S, Bedford MT. Biochim. Biophys. Acta 1839 702-710 (2014)
  5. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Morales Y, Cáceres T, May K, Hevel JM. Arch. Biochem. Biophys. 590 138-152 (2016)
  6. Structural and functional coordination of DNA and histone methylation. Cheng X. Cold Spring Harb Perspect Biol 6 (2014)
  7. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Hu H, Qian K, Ho MC, Zheng YG. Expert Opin Investig Drugs 25 335-358 (2016)
  8. Epigenetic targets and drug discovery: part 1: histone methylation. Liu Y, Liu K, Qin S, Xu C, Min J. Pharmacol. Ther. 143 275-294 (2014)
  9. Inhibitors of Protein Methyltransferases and Demethylases. Kaniskan HÜ, Martini ML, Jin J. Chem. Rev. 118 989-1068 (2018)
  10. Protein arginine methyltransferases: promising targets for cancer therapy. Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Exp Mol Med 53 788-808 (2021)
  11. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Wu Q, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Nat Rev Drug Discov 20 509-530 (2021)
  12. Targeting protein methylation: from chemical tools to precision medicines. Dilworth D, Barsyte-Lovejoy D. Cell Mol Life Sci 76 2967-2985 (2019)
  13. Modulating the modulators: regulation of protein arginine methyltransferases by post-translational modifications. Hartley AV, Lu T. Drug Discov Today 25 1735-1743 (2020)
  14. UsnRNP biogenesis: mechanisms and regulation. Gruss OJ, Meduri R, Schilling M, Fischer U. Chromosoma 126 577-593 (2017)
  15. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Jain K, Clarke SG. Arch Biochem Biophys 665 36-45 (2019)
  16. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Xu J, Richard S. Mol Cell 81 4357-4368 (2021)
  17. Targeting protein arginine methyltransferase 5 in disease. Richters A. Future Med Chem 9 2081-2098 (2017)
  18. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. Quinlan RBA, Brennan PE. RSC Chem Biol 2 759-795 (2021)
  19. PRMT5 function and targeting in cancer. Kim H, Ronai ZA. Cell Stress 4 199-215 (2020)
  20. Activity and Function of the PRMT8 Protein Arginine Methyltransferase in Neurons. Dong R, Li X, Lai KO. Life (Basel) 11 1132 (2021)
  21. Mechanisms and Inhibitors of Histone Arginine Methylation. Fulton MD, Brown T, Zheng YG. Chem Rec 18 1792-1807 (2018)
  22. PRMT5 in gene regulation and hematologic malignancies. Zhu F, Rui L. Genes Dis 6 247-257 (2019)
  23. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Cancers (Basel) 15 3999 (2023)
  24. Chemically induced degradation of epigenetic targets. Kabir M, Yu X, Kaniskan HÜ, Jin J. Chem Soc Rev 52 4313-4342 (2023)
  25. Collateral Victim or Rescue Worker?-The Role of Histone Methyltransferases in DNA Damage Repair and Their Targeting for Therapeutic Opportunities in Cancer. He L, Lomberk G. Front Cell Dev Biol 9 735107 (2021)
  26. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Al-Hamashi AA, Diaz K, Huang R. Curr Protein Pept Sci 21 699-712 (2020)
  27. Protein arginine methylation in viral infection and antiviral immunity. Zheng K, Chen S, Ren Z, Wang Y. Int J Biol Sci 19 5292-5318 (2023)
  28. Protein arginine methyltransferase 5: a potential cancer therapeutic target. Yuan Y, Nie H. Cell Oncol (Dordr) 44 33-44 (2021)
  29. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Brobbey C, Liu L, Yin S, Gan W. Int J Mol Sci 23 9780 (2022)
  30. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Bray C, Balcells C, McNeish IA, Keun HC. Front Oncol 13 1264785 (2023)

Articles citing this publication (109)

  1. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, Rioux N, Munchhof MJ, Jin L, Jacques SL, West KA, Lingaraj T, Stickland K, Ribich SA, Raimondi A, Scott MP, Waters NJ, Pollock RM, Smith JJ, Barbash O, Pappalardi M, Ho TF, Nurse K, Oza KP, Gallagher KT, Kruger R, Moyer MP, Copeland RA, Chesworth R, Duncan KW. Nat. Chem. Biol. 11 432-437 (2015)
  2. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Mavrakis KJ, McDonald ER, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, Stump M, deBeaumont R, Ho S, Yue Y, Liu Y, Yan-Neale Y, Yang G, Lin F, Yin H, Gao H, Kipp DR, Zhao S, McNamara JT, Sprague ER, Zheng B, Lin Y, Cho YS, Gu J, Crawford K, Ciccone D, Vitari AC, Lai A, Capka V, Hurov K, Porter JA, Tallarico J, Mickanin C, Lees E, Pagliarini R, Keen N, Schmelzle T, Hofmann F, Stegmeier F, Sellers WR. Science 351 1208-1213 (2016)
  3. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT. Sci Rep 3 1311 (2013)
  4. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Zhao DY, Gish G, Braunschweig U, Li Y, Ni Z, Schmitges FW, Zhong G, Liu K, Li W, Moffat J, Vedadi M, Min J, Pawson TJ, Blencowe BJ, Greenblatt JF. Nature 529 48-53 (2016)
  5. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K, McVay M, Choe S, Kernytsky A, Gross S, Konteatis Z, Murtie J, Blake ML, Travins J, Dorsch M, Biller SA, Marks KM. Cell Rep 15 574-587 (2016)
  6. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C, Al-Hadid Q, Clark AT, Bedford MT, Masson JY, Clarke SG. J. Biol. Chem. 288 37010-37025 (2013)
  7. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E. Nat. Chem. Biol. 13 381-388 (2017)
  8. Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen regulates the KSHV epigenome by association with the histone demethylase KDM3A. Kim KY, Huerta SB, Izumiya C, Wang DH, Martinez A, Shevchenko B, Kung HJ, Campbell M, Izumiya Y. J. Virol. 87 6782-6793 (2013)
  9. Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats. Hasegawa M, Toma-Fukai S, Kim JD, Fukamizu A, Shimizu T. FEBS Lett. 588 1942-1948 (2014)
  10. Protein Arginine Methylation and Citrullination in Epigenetic Regulation. Fuhrmann J, Thompson PR. ACS Chem. Biol. 11 654-668 (2016)
  11. Structural determinants for the strict monomethylation activity by trypanosoma brucei protein arginine methyltransferase 7. Wang C, Zhu Y, Caceres TB, Liu L, Peng J, Wang J, Chen J, Chen X, Zhang Z, Zuo X, Gong Q, Teng M, Hevel JM, Wu J, Shi Y. Structure 22 756-768 (2014)
  12. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD). Ratovitski T, Arbez N, Stewart JC, Chighladze E, Ross CA. Cell Cycle 14 1716-1729 (2015)
  13. Discovery of a Dual PRMT5-PRMT7 Inhibitor. Smil D, Eram MS, Li F, Kennedy S, Szewczyk MM, Brown PJ, Barsyte-Lovejoy D, Arrowsmith CH, Vedadi M, Schapira M. ACS Med Chem Lett 6 408-412 (2015)
  14. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. Duncan KW, Rioux N, Boriack-Sjodin PA, Munchhof MJ, Reiter LA, Majer CR, Jin L, Johnston LD, Chan-Penebre E, Kuplast KG, Porter Scott M, Pollock RM, Waters NJ, Smith JJ, Moyer MP, Copeland RA, Chesworth R. ACS Med Chem Lett 7 162-166 (2016)
  15. Synthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites. van Haren M, van Ufford LQ, Moret EE, Martin NI. Org. Biomol. Chem. 13 549-560 (2015)
  16. Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors. Shilo K, Wu X, Sharma S, Welliver M, Duan W, Villalona-Calero M, Fukuoka J, Sif S, Baiocchi R, Hitchcock CL, Zhao W, Otterson GA. Diagn Pathol 8 201 (2013)
  17. Protein Arginine Methyltransferase 8: Tetrameric Structure and Protein Substrate Specificity. Lee WC, Lin WL, Matsui T, Chen ES, Wei TY, Lin WH, Hu H, Zheng YG, Tsai MD, Ho MC. Biochemistry 54 7514-7523 (2015)
  18. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. Feng Y, Hadjikyriacou A, Clarke SG. J. Biol. Chem. 289 32604-32616 (2014)
  19. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Li Q, Chen P, Zeng Z, Liang F, Song Y, Xiong F, Li X, Gong Z, Zhou M, Xiang B, Peng C, Li X, Chen X, Li G, Xiong W. Tumour Biol. 37 12503-12512 (2016)
  20. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small-Molecule Inhibitor of PRMT5 with Potent Antitumor Activity. Brehmer D, Beke L, Wu T, Millar HJ, Moy C, Sun W, Mannens G, Pande V, Boeckx A, van Heerde E, Nys T, Gustin EM, Verbist B, Zhou L, Fan Y, Bhargava V, Safabakhsh P, Vinken P, Verhulst T, Gilbert A, Rai S, Graubert TA, Pastore F, Fiore D, Gu J, Johnson A, Philippar U, Morschhäuser B, Walker D, De Lange D, Keersmaekers V, Viellevoye M, Diels G, Schepens W, Thuring JW, Meerpoel L, Packman K, Lorenzi MV, Laquerre S. Mol Cancer Ther 20 2317-2328 (2021)
  21. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. Cura V, Troffer-Charlier N, Wurtz JM, Bonnefond L, Cavarelli J. Acta Crystallogr. D Biol. Crystallogr. 70 2401-2412 (2014)
  22. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. Neuenkirchen N, Englbrecht C, Ohmer J, Ziegenhals T, Chari A, Fischer U. EMBO J. 34 1925-1941 (2015)
  23. A remodeled protein arginine methyltransferase 1 (PRMT1) generates symmetric dimethylarginine. Gui S, Gathiaka S, Li J, Qu J, Acevedo O, Hevel JM. J. Biol. Chem. 289 9320-9327 (2014)
  24. Human fetal globin gene expression is regulated by LYAR. Ju J, Wang Y, Liu R, Zhang Y, Xu Z, Wang Y, Wu Y, Liu M, Cerruti L, Zou F, Ma C, Fang M, Tan R, Jane SM, Zhao Q. Nucleic Acids Res. 42 9740-9752 (2014)
  25. Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Jin W, Wang Y, Liu CP, Yang N, Jin M, Cong Y, Wang M, Xu RM. Genes Dev. 30 2391-2403 (2016)
  26. Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Braun CJ, Stanciu M, Boutz PL, Patterson JC, Calligaris D, Higuchi F, Neupane R, Fenoglio S, Cahill DP, Wakimoto H, Agar NYR, Yaffe MB, Sharp PA, Hemann MT, Lees JA. Cancer Cell 32 411-426.e11 (2017)
  27. PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Chu Z, Niu B, Zhu H, He X, Bai C, Li G, Hua J. Cell Prolif. 48 29-38 (2015)
  28. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, McAllister G, Hoffman G, Ramadan N, Hartung A, Feng Y, Kipp DR, Quinn C, Fodor M, Baird J, Schoumacher M, Meyer R, Deeds J, Buchwalter G, Stams T, Keen N, Sellers WR, Brown M, Pagliarini RA. Elife 5 (2016)
  29. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Li WJ, He YH, Yang JJ, Hu GS, Lin YA, Ran T, Peng BL, Xie BL, Huang MF, Gao X, Huang HH, Zhu HH, Ye F, Liu W. Nat Commun 12 1946 (2021)
  30. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. J. Struct. Biol. 191 175-183 (2015)
  31. PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1. Gao G, Dhar S, Bedford MT. Nucleic Acids Res. 45 4359-4369 (2017)
  32. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1. Hu H, Luo C, Zheng YG. J. Biol. Chem. 291 26722-26738 (2016)
  33. Allosteric Modulation of Protein Arginine Methyltransferase 5 (PRMT5). Palte RL, Schneider SE, Altman MD, Hayes RP, Kawamura S, Lacey BM, Mansueto MS, Reutershan M, Siliphaivanh P, Sondey C, Xu H, Xu Z, Ye Y, Machacek MR. ACS Med Chem Lett 11 1688-1693 (2020)
  34. Comparison of a High-Throughput Mass Spectrometry Method and Radioactive Filter Binding to Assay the Protein Methyltransferase PRMT5. Maegley KA, Krivacic C, Bingham P, Liu W, Brooun A. Assay Drug Dev Technol 13 235-240 (2015)
  35. Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Krapivinsky G, Krapivinsky L, Renthal NE, Santa-Cruz A, Manasian Y, Clapham DE. Proc. Natl. Acad. Sci. U.S.A. 114 E7092-E7100 (2017)
  36. Methylosome protein 50 associates with the purinergic receptor P2X5 and is involved in osteoclast maturation. Kim H, Walsh MC, Yu J, Laskoski P, Takigawa K, Takegahara N, Choi Y. FEBS Lett 594 144-152 (2020)
  37. PRMT5-Mediated Methylation of NF-κB p65 at Arg174 Is Required for Endothelial CXCL11 Gene Induction in Response to TNF-α and IFN-γ Costimulation. Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE. PLoS ONE 11 e0148905 (2016)
  38. Snail/PRMT5/NuRD complex contributes to DNA hypermethylation in cervical cancer by TET1 inhibition. Gao J, Liu R, Feng D, Huang W, Huo M, Zhang J, Leng S, Yang Y, Yang T, Yin X, Teng X, Yu H, Yuan B, Wang Y. Cell Death Differ 28 2818-2836 (2021)
  39. Discovery of selective protein arginine methyltransferase 5 inhibitors and biological evaluations. Ji S, Ma S, Wang WJ, Huang SZ, Wang TQ, Xiang R, Hu YG, Chen Q, Li LL, Yang SY. Chem Biol Drug Des 89 585-598 (2017)
  40. LKB1 regulates PRMT5 activity in breast cancer. Lattouf H, Kassem L, Jacquemetton J, Choucair A, Poulard C, Trédan O, Corbo L, Diab-Assaf M, Hussein N, Treilleux I, Le Romancer M. Int. J. Cancer 144 595-606 (2019)
  41. MEP50/PRMT5 Reduces Gene Expression by Histone Arginine Methylation and this Is Reversed by PKCδ/p38δ Signaling. Saha K, Adhikary G, Eckert RL. J. Invest. Dermatol. 136 214-224 (2016)
  42. Methylosome Protein 50 and PKCδ/p38δ Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression. Saha K, Eckert RL. J. Biol. Chem. 290 13521-13530 (2015)
  43. PCprophet: a framework for protein complex prediction and differential analysis using proteomic data. Fossati A, Li C, Uliana F, Wendt F, Frommelt F, Sykacek P, Heusel M, Hallal M, Bludau I, Capraz T, Xue P, Song J, Wollscheid B, Purcell AW, Gstaiger M, Aebersold R. Nat Methods 18 520-527 (2021)
  44. SECIS-binding protein 2 interacts with the SMN complex and the methylosome for selenoprotein mRNP assembly and translation. Gribling-Burrer AS, Leichter M, Wurth L, Huttin A, Schlotter F, Troffer-Charlier N, Cura V, Barkats M, Cavarelli J, Massenet S, Allmang C. Nucleic Acids Res. 45 5399-5413 (2017)
  45. The PRMT5/WDR77 complex regulates alternative splicing through ZNF326 in breast cancer. Rengasamy M, Zhang F, Vashisht A, Song WM, Aguilo F, Sun Y, Li S, Zhang W, Zhang B, Wohlschlegel JA, Walsh MJ. Nucleic Acids Res. 45 11106-11120 (2017)
  46. Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers. Prabhu L, Wei H, Chen L, Demir Ö, Sandusky G, Sun E, Wang J, Mo J, Zeng L, Fishel M, Safa A, Amaro R, Korc M, Zhang ZY, Lu T. Oncotarget 8 39963-39977 (2017)
  47. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, He Y, Liu W, Liu R, Chen CH, Shi Y, Pan J, Zhou J, Jiang D, Chen C. Cell Death Differ 28 2931-2945 (2021)
  48. Functional domains of androgen receptor coactivator p44/Mep50/WDR77and its interaction with Smad1. Li Y, Tian L, Ligr M, Daniels G, Peng Y, Wu X, Singh M, Wei J, Shao Y, Lepor H, Xu R, Chang Z, Wang Z, Lee P. PLoS ONE 8 e64663 (2013)
  49. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6). Lo Sardo A, Altamura S, Pegoraro S, Maurizio E, Sgarra R, Manfioletti G. PLoS ONE 8 e53750 (2013)
  50. LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP, Li F, Kennedy S, Li B, Mader MM, Arrowsmith CH, Brown PJ, Eram MS, Szewczyk MM, Barsyte-Lovejoy D, Vedadi M, Guccione E, Campbell RM. ACS Med Chem Lett 9 612-617 (2018)
  51. PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity. Kim H, Kim H, Feng Y, Li Y, Tamiya H, Tocci S, Ronai ZA. Sci Transl Med 12 (2020)
  52. Structural diversity of the epigenetics pocketome. Cabaye A, Nguyen KT, Liu L, Pande V, Schapira M. Proteins 83 1316-1326 (2015)
  53. The Role of the PRMT5-SND1 Axis in Hepatocellular Carcinoma. Wright T, Wang Y, Bedford MT. Epigenomes 5 2 (2021)
  54. Transition state mimics are valuable mechanistic probes for structural studies with the arginine methyltransferase CARM1. van Haren MJ, Marechal N, Troffer-Charlier N, Cianciulli A, Sbardella G, Cavarelli J, Martin NI. Proc. Natl. Acad. Sci. U.S.A. 114 3625-3630 (2017)
  55. Effects of substrate modifications on the arginine dimethylation activities of PRMT1 and PRMT5. Fulton MD, Dang T, Brown T, Zheng YG. Epigenetics 17 1-18 (2022)
  56. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. Liu S, Liu Z, Piao C, Zhang Z, Kong C, Yin L, Liu X. J Exp Clin Cancer Res 41 293 (2022)
  57. Myosin phosphatase and RhoA-activated kinase modulate arginine methylation by the regulation of protein arginine methyltransferase 5 in hepatocellular carcinoma cells. Sipos A, Iván J, Bécsi B, Darula Z, Tamás I, Horváth D, Medzihradszky KF, Erdődi F, Lontay B. Sci Rep 7 40590 (2017)
  58. PRMT5 Regulates DNA Repair by Controlling the Alternative Splicing of Histone-Modifying Enzymes. Hamard PJ, Santiago GE, Liu F, Karl DL, Martinez C, Man N, Mookhtiar AK, Duffort S, Greenblatt S, Verdun RE, Nimer SD. Cell Rep 24 2643-2657 (2018)
  59. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud. Norrie JL, Li Q, Co S, Huang BL, Ding D, Uy JC, Ji Z, Mackem S, Bedford MT, Galli A, Ji H, Vokes SA. Development 143 4608-4619 (2016)
  60. Selective small-chemical inhibitors of protein arginine methyltransferase 5 with anti-lung cancer activity. Kong GM, Yu M, Gu Z, Chen Z, Xu RM, O'Bryant D, Wang Z. PLoS ONE 12 e0181601 (2017)
  61. Structural insights into the recognition of histone H3Q5 serotonylation by WDR5. Zhao J, Chen W, Pan Y, Zhang Y, Sun H, Wang H, Yang F, Liu Y, Shen N, Zhang X, Mo X, Zang J. Sci Adv 7 eabf4291 (2021)
  62. Sulforaphane suppresses PRMT5/MEP50 function in epidermal squamous cell carcinoma leading to reduced tumor formation. Saha K, Fisher ML, Adhikary G, Grun D, Eckert RL. Carcinogenesis 38 827-836 (2017)
  63. Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction-Reconstruction and Fragment-Growing Approach. Iannelli G, Milite C, Marechal N, Cura V, Bonnefond L, Troffer-Charlier N, Feoli A, Rescigno D, Wang Y, Cipriano A, Viviano M, Bedford MT, Cavarelli J, Castellano S, Sbardella G. J Med Chem 65 11574-11606 (2022)
  64. Aflatoxin-induced upregulation of protein arginine methyltransferase 5 is mediated by protein kinase C and extracellular signal-regulated kinase. Ghufran MS, Soni P, Kanade SR. Cell Biol Toxicol 35 67-80 (2019)
  65. Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations. Che Y, Liu Y, Yao Y, Hill HA, Li Y, Cai Q, Yan F, Jain P, Wang W, Rui L, Wang M. Blood Cancer J 13 27 (2023)
  66. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Yuan H, Zhao L, Yuan Y, Yun H, Zheng W, Geng Y, Yang G, Wang Y, Zhao M, Zhang X. Theranostics 11 8362-8378 (2021)
  67. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. Brown JI, Koopmans T, van Strien J, Martin NI, Frankel A. Chembiochem 19 85-99 (2018)
  68. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, Das BB. Nucleic Acids Res. 46 5601-5617 (2018)
  69. PRMT5-mediated regulation of developmental myelination. Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, Yattah C, Zhang J, Teo SX, Zhou T, Chen S, Bernstein E, Canoll P, Guccione E, Casaccia P. Nat Commun 9 2840 (2018)
  70. Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity. Quillien A, Gilbert G, Boulet M, Ethuin S, Waltzer L, Vandel L. PLoS Genet 17 e1009641 (2021)
  71. SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. Tamiya H, Kim H, Klymenko O, Kim H, Feng Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, Brown K, Kluger H, Zhang H, Iwai K, Ronai ZA. J. Clin. Invest. 128 517-530 (2018)
  72. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. Cura V, Marechal N, Troffer-Charlier N, Strub JM, van Haren MJ, Martin NI, Cianférani S, Bonnefond L, Cavarelli J. FEBS J. 284 77-96 (2017)
  73. Sulforaphane inhibits PRMT5 and MEP50 function to suppress the mesothelioma cancer cell phenotype. Ezeka G, Adhikary G, Kandasamy S, Friedberg JS, Eckert RL. Mol Carcinog 60 429-439 (2021)
  74. Autophagy dictates sensitivity to PRMT5 inhibitor in breast cancer. Brobbey C, Yin S, Liu L, Ball LE, Howe PH, Delaney JR, Gan W. Sci Rep 13 10752 (2023)
  75. CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells. Nie M, Wang Y, Guo C, Li X, Wang Y, Deng Y, Yao B, Gui T, Ma C, Liu M, Wang P, Wang R, Tan R, Fang M, Chen B, He Y, Huang DCS, Ju J, Zhao Q. J. Biol. Chem. 293 17454-17463 (2018)
  76. Components from the Human c-myb Transcriptional Regulation System Reactivate Epigenetically Repressed Transgenes. Barrett CM, McCracken R, Elmer J, Haynes KA. Int J Mol Sci 21 (2020)
  77. Design, Synthesis and Biological Evaluation of Novel and Potent Protein Arginine Methyltransferases 5 Inhibitors for Cancer Therapy. Tang Y, Huang S, Chen X, Huang J, Lin Q, Huang L, Wang S, Zhu Q, Xu Y, Zou Y. Molecules 27 6637 (2022)
  78. Discovery of Novel PRMT5 Inhibitors by Virtual Screening and Biological Evaluations. Tao H, Yan X, Zhu K, Zhang H. Chem Pharm Bull (Tokyo) 67 382-388 (2019)
  79. Discovery of Potent and Selective Covalent Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors. Lin H, Wang M, Zhang YW, Tong S, Leal RA, Shetty R, Vaddi K, Luengo JI. ACS Med Chem Lett 10 1033-1038 (2019)
  80. Discovery of a potent and dual-selective bisubstrate inhibitor for protein arginine methyltransferase 4/5. Al-Hamashi AA, Chen D, Deng Y, Dong G, Huang R. Acta Pharm Sin B 11 2709-2718 (2021)
  81. Embryonic Program Activated during Blast Crisis of Chronic Myelogenous Leukemia (CML) Implicates a TCF7L2 and MYC Cooperative Chromatin Binding. Desterke C, Hugues P, Hwang JW, Bennaceur-Griscelli A, Turhan AG. Int J Mol Sci 21 (2020)
  82. Expression of mep50 in adult and embryos of medaka fish (Oryzias latipes). Cheng N, Guo M, Chang P, Zhang X, Zhang R, Qi C, Zhong X, Zhou Q, Zhao H. Fish Physiol. Biochem. 42 1053-1061 (2016)
  83. Expression, Localization and Prognosis Association of MEP50 in Breast Cancer. Suresh S, Vinet M, Dakroub R, Lesage L, Ye M, Fayyad-Kazan H, Nicolas A, Meseure D, Dubois T. Cancers (Basel) 14 4766 (2022)
  84. Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. Feoli A, Iannelli G, Cipriano A, Milite C, Shen L, Wang Z, Hadjikyriacou A, Lowe TL, Safaeipour C, Viviano M, Sarno G, Morretta E, Monti MC, Yang Y, Clarke SG, Cosconati S, Castellano S, Sbardella G. J Med Chem 66 13665-13683 (2023)
  85. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. RNA 29 1673-1690 (2023)
  86. Inhibition of PRMT5 by market drugs as a novel cancer therapeutic avenue. Prabhu L, Martin M, Chen L, Demir Ö, Jin J, Huang X, Motolani A, Sun M, Jiang G, Nakshatri H, Fishel ML, Sun S, Safa A, Amaro RE, Kelley MR, Liu Y, Zhang ZY, Lu T. Genes Dis 10 267-283 (2023)
  87. Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in lung adenocarcinoma. Huang J, Hu B, Yang Y, Liu H, Fan X, Zhou J, Chen L. BMC Cancer 23 241 (2023)
  88. MafB, WDR77, and ß-catenin interact with each other and have similar genome association profiles. He L, Gao M, Pratt H, Weng Z, Struhl K. PLoS One 17 e0264799 (2022)
  89. Mass spectrometry analysis of affinity-purified cytoplasmic translation initiation complexes from human and fly cells. Singh CR, Tani N, Nakamura A, Asano K. STAR Protoc 3 101739 (2022)
  90. PRMT1 loss sensitizes cells to PRMT5 inhibition. Gao G, Zhang L, Villarreal OD, He W, Su D, Bedford E, Moh P, Shen J, Shi X, Bedford MT, Xu H. Nucleic Acids Res. 47 5038-5048 (2019)
  91. PRMT5 Cooperates with pICln to Function as a Master Epigenetic Activator of DNA Double-Strand Break Repair Genes. Owens JL, Beketova E, Liu S, Tinsley SL, Asberry AM, Deng X, Huang J, Li C, Wan J, Hu CD. iScience 23 100750 (2020)
  92. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Dansu DK, Liang J, Selcen I, Zheng H, Moore DF, Casaccia P. Front Cell Neurosci 16 820226 (2022)
  93. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Yuan HF, Zhao M, Zhao LN, Yun HL, Yang G, Geng Y, Wang YF, Zheng W, Yuan Y, Song TQ, Niu JQ, Zhang XD. Acta Pharmacol Sin (2022)
  94. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Radzisheuskaya A, Shliaha PV, Grinev V, Lorenzini E, Kovalchuk S, Shlyueva D, Gorshkov V, Hendrickson RC, Jensen ON, Helin K. Nat. Struct. Mol. Biol. 26 999-1012 (2019)
  95. PRMT5 promotes ovarian cancer growth through enhancing Warburg effect by methylating ENO1. Xie F, Zhang H, Zhu K, Jiang CS, Zhang X, Chang H, Qiao Y, Sun M, Wang J, Wang M, Tan J, Wang T, Zhao L, Zhang Y, Lin J, Zhang C, Liu S, Zhao J, Luo C, Zhang S, Shan C. MedComm (2020) 4 e245 (2023)
  96. Protein Arginine Methyltransferase 5 Promotes pICln-Dependent Androgen Receptor Transcription in Castration-Resistant Prostate Cancer. Beketova E, Fang S, Owens JL, Liu S, Chen X, Zhang Q, Asberry AM, Deng X, Malola J, Huang J, Li C, Pili R, Elzey BD, Ratliff TL, Wan J, Hu CD. Cancer Res 80 4904-4917 (2020)
  97. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. Cao MT, Feng Y, Zheng YG. World J Biol Chem 14 84-98 (2023)
  98. Proteomic analyses reveal new features of the box H/ACA RNP biogenesis. Schlotter F, Mérouani S, Flayac J, Kogey V, Issa A, Dodré M, Huttin A, Branlant C, Bertrand E, Labialle S, Vandermoere F, Verheggen C, Massenet S. Nucleic Acids Res 51 3357-3374 (2023)
  99. Rational Design, synthesis and biological evaluation of novel triazole derivatives as potent and selective PRMT5 inhibitors with antitumor activity. Zhu K, Shao J, Tao H, Yan X, Luo C, Zhang H, Duan W. J. Comput. Aided Mol. Des. 33 775-785 (2019)
  100. Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. AbuHammad S, Cullinane C, Martin C, Bacolas Z, Ward T, Chen H, Slater A, Ardley K, Kirby L, Chan KT, Brajanovski N, Smith LK, Rao AD, Lelliott EJ, Kleinschmidt M, Vergara IA, Papenfuss AT, Lau P, Ghosh P, Haupt S, Haupt Y, Sanij E, Poortinga G, Pearson RB, Falk H, Curtis DJ, Stupple P, Devlin M, Street I, Davies MA, McArthur GA, Sheppard KE. Proc. Natl. Acad. Sci. U.S.A. 116 17990-18000 (2019)
  101. Sirtuin 7-mediated deacetylation of WD repeat domain 77 (WDR77) suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity. Qi H, Shi X, Yu M, Liu B, Liu M, Song S, Chen S, Zou J, Zhu WG, Luo J. J. Biol. Chem. 293 17769-17779 (2018)
  102. Structural Basis of Protein Arginine Methyltransferase Activation by a Catalytically Dead Homolog (Prozyme). Hashimoto H, Kafková L, Raczkowski A, Jordan KD, Read LK, Debler EW. J Mol Biol 432 410-426 (2020)
  103. TP53 mutations and RNA-binding protein MUSASHI-2 drive resistance to PRMT5-targeted therapy in B-cell lymphoma. Erazo T, Evans CM, Zakheim D, Chu KL, Refermat AY, Asgari Z, Yang X, Da Silva Ferreira M, Mehta S, Russo MV, Knezevic A, Zhang XP, Chen Z, Fennell M, Garippa R, Seshan V, de Stanchina E, Barbash O, Batlevi CL, Leslie CS, Melnick AM, Younes A, Kharas MG. Nat Commun 13 5676 (2022)
  104. TRAF6 Promotes PRMT5 Activity in a Ubiquitination-Dependent Manner. Liu L, Yin S, Gan W. Cancers (Basel) 15 2501 (2023)
  105. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, Liu L, Liu W, Yang T, Cao X, Yu B, Xu M, Chen YG, Chen L. Theranostics 11 6592-6606 (2021)
  106. The PRMT5/WDR77 complex restricts hepatitis E virus replication. Ju X, Yu Y, Ren W, Dong L, Meng X, Deng H, Nan Y, Ding Q. PLoS Pathog 19 e1011434 (2023)
  107. The uncharacterized protein FAM47E interacts with PRMT5 and regulates its functions. Chakrapani B, Khan MIK, Kadumuri RV, Gupta S, Verma M, Awasthi S, Govindaraju G, Mahesh A, Rajavelu A, Chavali S, Dhayalan A. Life Sci Alliance 4 (2021)
  108. WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response. Li J, Zhang R, Wang C, Zhu J, Ren M, Jiang Y, Hou X, Du Y, Wu Q, Qi S, Li L, Chen S, Yang H, Hou F. Nat Commun 14 4824 (2023)
  109. ZNF330/NOA36 interacts with HSPA1 and HSPA8 and modulates cell cycle and proliferation in response to heat shock in HEK293 cells. Sanchez-Briñas A, Duran-Ruiz C, Astola A, Arroyo MM, Raposo FG, Valle A, Bolivar J. Biol Direct 18 26 (2023)