4fjo Citations

Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ.

J Biol Chem 287 33836-46 (2012)
Cited: 83 times
EuropePMC logo PMID: 22859295

Abstract

DNA synthesis across lesions during genomic replication requires concerted actions of specialized DNA polymerases in a potentially mutagenic process known as translesion synthesis. Current models suggest that translesion synthesis in mammalian cells is achieved in two sequential steps, with a Y-family DNA polymerase (κ, η, ι, or Rev1) inserting a nucleotide opposite the lesion and with the heterodimeric B-family polymerase ζ, consisting of the catalytic Rev3 subunit and the accessory Rev7 subunit, replacing the insertion polymerase to carry out primer extension past the lesion. Effective translesion synthesis in vertebrates requires the scaffolding function of the C-terminal domain (CTD) of Rev1 that interacts with the Rev1-interacting region of polymerases κ, η, and ι and with the Rev7 subunit of polymerase ζ. We report the purification and structure determination of a quaternary translesion polymerase complex consisting of the Rev1 CTD, the heterodimeric Pol ζ complex, and the Pol κ Rev1-interacting region. Yeast two-hybrid assays were employed to identify important interface residues of the translesion polymerase complex. The structural elucidation of such a quaternary translesion polymerase complex encompassing both insertion and extension polymerases bridged by the Rev1 CTD provides the first molecular explanation of the essential scaffolding function of Rev1 and highlights the Rev1 CTD as a promising target for developing novel cancer therapeutics to suppress translesion synthesis. Our studies support the notion that vertebrate insertion and extension polymerases could structurally cooperate within a megatranslesion polymerase complex (translesionsome) nucleated by Rev1 to achieve efficient lesion bypass without incurring an additional switching mechanism.

Reviews - 4fjo mentioned but not cited (8)

  1. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Yang W. Biochemistry 53 2793-2803 (2014)
  2. The structural basis of XRCC1-mediated DNA repair. London RE. DNA Repair (Amst) 30 90-103 (2015)
  3. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Zhao L, Washington MT. Genes (Basel) 8 E24 (2017)
  4. The Rev1-Polζ translesion synthesis mutasome: Structure, interactions and inhibition. Rizzo AA, Korzhnev DM. Enzymes 45 139-181 (2019)
  5. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Patel SM, Dash RC, Hadden MK. Expert Opin Investig Drugs 30 13-24 (2021)
  6. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. McPherson KS, Korzhnev DM. RSC Chem Biol 2 1167-1195 (2021)
  7. Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Wu H, Yao H, He C, Jia Y, Zhu Z, Xu S, Li D, Xu J. Acta Pharm Sin B 12 3548-3566 (2022)
  8. Structural basis for the molecular interactions in DNA damage tolerances. Hashimoto H, Hishiki A, Hara K, Kikuchi S. Biophys Physicobiol 14 199-205 (2017)

Articles - 4fjo mentioned but not cited (8)

  1. ELM-the eukaryotic linear motif resource in 2020. Kumar M, Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. Nucleic Acids Res 48 D296-D306 (2020)
  2. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, Bonham S, Kessler BM, Rottenberg S, Cornall RJ, Green CM, Chapman JR. Nature 560 122-127 (2018)
  3. Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ. Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P. J Biol Chem 287 33836-33846 (2012)
  4. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Wojtaszek JL, Chatterjee N, Najeeb J, Ramos A, Lee M, Bian K, Xue JY, Fenton BA, Park H, Li D, Hemann MT, Hong J, Walker GC, Zhou P. Cell 178 152-159.e11 (2019)
  5. The transcription factor TFII-I promotes DNA translesion synthesis and genomic stability. Fattah FJ, Hara K, Fattah KR, Yang C, Wu N, Warrington R, Chen DJ, Zhou P, Boothman DA, Yu H. PLoS Genet 10 e1004419 (2014)
  6. XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair. Gabel SA, DeRose EF, London RE. DNA Repair (Amst) 12 1105-1113 (2013)
  7. Analyzing the Catalytic Activities and Interactions of Eukaryotic Translesion Synthesis Polymerases. Powers KT, Washington MT. Methods Enzymol 592 329-356 (2017)
  8. Posttranslational Regulation of Human DNA Polymerase ι. McIntyre J, McLenigan MP, Frank EG, Dai X, Yang W, Wang Y, Woodgate R. J Biol Chem 290 27332-27344 (2015)


Reviews citing this publication (22)

  1. Mechanisms of DNA damage, repair, and mutagenesis. Chatterjee N, Walker GC. Environ Mol Mutagen 58 235-263 (2017)
  2. The Fanconi anaemia pathway: new players and new functions. Ceccaldi R, Sarangi P, D'Andrea AD. Nat Rev Mol Cell Biol 17 337-349 (2016)
  3. Translesion DNA polymerases in eukaryotes: what makes them tick? Vaisman A, Woodgate R. Crit Rev Biochem Mol Biol 52 274-303 (2017)
  4. Eukaryotic DNA Polymerases in Homologous Recombination. McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Annu Rev Genet 50 393-421 (2016)
  5. Eukaryotic DNA polymerase ζ. Makarova AV, Burgers PM. DNA Repair (Amst) 29 47-55 (2015)
  6. The multifaceted roles of the HORMA domain in cellular signaling. Rosenberg SC, Corbett KD. J Cell Biol 211 745-755 (2015)
  7. Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy? Yamanaka K, Chatterjee N, Hemann MT, Walker GC. PLoS Genet 13 e1006842 (2017)
  8. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. Boehm EM, Washington MT. Bioessays 38 1117-1122 (2016)
  9. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability. Sharma S, Helchowski CM, Canman CE. Mutat Res 743-744 97-110 (2013)
  10. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. Roy U, Schärer OD. DNA Repair (Amst) 44 33-41 (2016)
  11. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Haynes B, Saadat N, Myung B, Shekhar MP. Mutat Res Rev Mutat Res 763 258-266 (2015)
  12. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. Sharma S, Canman CE. Environ Mol Mutagen 53 725-740 (2012)
  13. Eukaryotic translesion synthesis: Choosing the right tool for the job. Powers KT, Washington MT. DNA Repair (Amst) 71 127-134 (2018)
  14. Contributions of the specialised DNA polymerases to replication of structured DNA. Wickramasinghe CM, Arzouk H, Frey A, Maiter A, Sale JE. DNA Repair (Amst) 29 83-90 (2015)
  15. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Zafar MK, Eoff RL. Chem Res Toxicol 30 1942-1955 (2017)
  16. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Peake JD, Noguchi E. Hum Genet 141 1811-1836 (2022)
  17. Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy. Jo U, Kim H. Mol Cells 38 669-676 (2015)
  18. Structure and function relationships in mammalian DNA polymerases. Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Cell Mol Life Sci 77 35-59 (2020)
  19. REV7: Jack of many trades. de Krijger I, Boersma V, Jacobs JJL. Trends Cell Biol 31 686-701 (2021)
  20. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Barnes R, Eckert K. Genes (Basel) 8 E19 (2017)
  21. Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. Bellí G, Colomina N, Castells-Roca L, Lorite NP. J Fungi (Basel) 8 621 (2022)
  22. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. Taylor SJ, Arends MJ, Langdon SP. Explor Target Antitumor Ther 1 26-52 (2020)

Articles citing this publication (45)

  1. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Lee YS, Gregory MT, Yang W. Proc Natl Acad Sci U S A 111 2954-2959 (2014)
  2. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. Inoue A, Kikuchi S, Hishiki A, Shao Y, Heath R, Evison BJ, Actis M, Canman CE, Hashimoto H, Fujii N. J Biol Chem 289 7109-7120 (2014)
  3. REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Tomida J, Takata K, Lange SS, Schibler AC, Yousefzadeh MJ, Bhetawal S, Dent SY, Wood RD. Nucleic Acids Res 43 1000-1011 (2015)
  4. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis. Pustovalova Y, Magalhães MT, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM. Biochemistry 55 2043-2053 (2016)
  5. Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex. Rizzo AA, Vassel FM, Chatterjee N, D'Souza S, Li Y, Hao B, Hemann MT, Walker GC, Korzhnev DM. Proc Natl Acad Sci U S A 115 E8191-E8200 (2018)
  6. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction. Sail V, Rizzo AA, Chatterjee N, Dash RC, Ozen Z, Walker GC, Korzhnev DM, Hadden MK. ACS Chem Biol 12 1903-1912 (2017)
  7. PCNA tool belts and polymerase bridges form during translesion synthesis. Boehm EM, Spies M, Washington MT. Nucleic Acids Res 44 8250-8260 (2016)
  8. Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Malik R, Kopylov M, Gomez-Llorente Y, Jain R, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Nat Struct Mol Biol 27 913-924 (2020)
  9. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. Pustovalova Y, Maciejewski MW, Korzhnev DM. J Mol Biol 425 3091-3105 (2013)
  10. The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1. Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JC, Washington MT. J Biol Chem 291 8735-8744 (2016)
  11. Molecular basis for assembly of the shieldin complex and its implications for NHEJ. Liang L, Feng J, Zuo P, Yang J, Lu Y, Yin Y. Nat Commun 11 1972 (2020)
  12. The architecture of yeast DNA polymerase ζ. Gómez-Llorente Y, Malik R, Jain R, Choudhury JR, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Cell Rep 5 79-86 (2013)
  13. Dynamic feature of mitotic arrest deficient 2-like protein 2 (MAD2L2) and structural basis for its interaction with chromosome alignment-maintaining phosphoprotein (CAMP). Hara K, Taharazako S, Ikeda M, Fujita H, Mikami Y, Kikuchi S, Hishiki A, Yokoyama H, Ishikawa Y, Kanno SI, Tanaka K, Hashimoto H. J Biol Chem 292 17658-17667 (2017)
  14. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ. Yoon JH, Park J, Conde J, Wakamiya M, Prakash L, Prakash S. Genes Dev 29 2588-2602 (2015)
  15. Structural insights into the assembly of human translesion polymerase complexes. Xie W, Yang X, Xu M, Jiang T. Protein Cell 3 864-874 (2012)
  16. Small molecule inhibitors of PCNA/PIP-box interaction suppress translesion DNA synthesis. Actis M, Inoue A, Evison B, Perry S, Punchihewa C, Fujii N. Bioorg Med Chem 21 1972-1977 (2013)
  17. Replicative bypass of abasic site in Escherichia coli and human cells: similarities and differences. Weerasooriya S, Jasti VP, Basu AK. PLoS One 9 e107915 (2014)
  18. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability. Lange SS, Tomida J, Boulware KS, Bhetawal S, Wood RD. PLoS Genet 12 e1005759 (2016)
  19. FF483-484 motif of human Polη mediates its interaction with the POLD2 subunit of Polδ and contributes to DNA damage tolerance. Baldeck N, Janel-Bintz R, Wagner J, Tissier A, Fuchs RP, Burkovics P, Haracska L, Despras E, Bichara M, Chatton B, Cordonnier AM. Nucleic Acids Res 43 2116-2125 (2015)
  20. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction. Actis ML, Ambaye ND, Evison BJ, Shao Y, Vanarotti M, Inoue A, McDonald ET, Kikuchi S, Heath R, Hara K, Hashimoto H, Fujii N. Bioorg Med Chem 24 4339-4346 (2016)
  21. Trapping and visualizing intermediate steps in the mismatch repair pathway in vivo. Lenhart JS, Pillon MC, Guarné A, Simmons LA. Mol Microbiol 90 680-698 (2013)
  22. Structural basis for shieldin complex subunit 3-mediated recruitment of the checkpoint protein REV7 during DNA double-strand break repair. Dai Y, Zhang F, Wang L, Shan S, Gong Z, Zhou Z. J Biol Chem 295 250-262 (2020)
  23. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Environ Mol Mutagen 56 650-662 (2015)
  24. In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. Takeiri A, Wada NA, Motoyama S, Matsuzaki K, Tateishi H, Matsumoto K, Niimi N, Sassa A, Grúz P, Masumura K, Yamada M, Mishima M, Jishage KI, Nohmi T. DNA Repair (Amst) 24 113-121 (2014)
  25. Letter Insights into the regulation of human Rev1 for translesion synthesis polymerases revealed by the structural studies on its polymerase-interacting domain. Liu D, Ryu KS, Ko J, Sun D, Lim K, Lee JO, Hwang Jm, Lee ZW, Choi BS. J Mol Cell Biol 5 204-206 (2013)
  26. REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch. Wang X, Pernicone N, Pertz L, Hua D, Zhang T, Listovsky T, Xie W. J Biol Chem 294 15733-15742 (2019)
  27. Molecular mechanisms of assembly and TRIP13-mediated remodeling of the human Shieldin complex. Xie W, Wang S, Wang J, de la Cruz MJ, Xu G, Scaltriti M, Patel DJ. Proc Natl Acad Sci U S A 118 e2024512118 (2021)
  28. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Ignatov AV, Bondarenko KA, Makarova AV. Acta Naturae 9 12-26 (2017)
  29. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility. Powers KT, Elcock AH, Washington MT. Nucleic Acids Res 46 2107-2120 (2018)
  30. The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. Uchiyama M, Terunuma J, Hanaoka F. PLoS One 10 e0130000 (2015)
  31. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Nucleic Acids Res 48 9660-9680 (2020)
  32. Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Rechkoblit O, Kolbanovskiy A, Landes H, Geacintov NE, Aggarwal AK. Nat Commun 8 965 (2017)
  33. REV1 is important for the ATR-Chk1 DNA damage response pathway in Xenopus egg extracts. DeStephanis D, McLeod M, Yan S. Biochem Biophys Res Commun 460 609-615 (2015)
  34. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa. Maddukuri L, Ketkar A, Eddy S, Zafar MK, Eoff RL. Nucleic Acids Res 42 12027-12040 (2014)
  35. Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining. van Bostelen I, van Schendel R, Romeijn R, Tijsterman M. PLoS Genet 16 e1008759 (2020)
  36. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo. Masumura K, Toyoda-Hokaiwado N, Niimi N, Grúz P, Wada NA, Takeiri A, Jishage KI, Mishima M, Nohmi T. Environ Mol Mutagen 58 644-653 (2017)
  37. Rev1 plays central roles in mammalian DNA-damage tolerance in response to UV irradiation. Niu X, Chen W, Bi T, Lu M, Qin Z, Xiao W. FEBS J 286 2711-2725 (2019)
  38. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin. Cui G, Botuyan MV, Mer G. J Mol Biol 430 2042-2050 (2018)
  39. A stapled POL κ peptide targets REV1 to inhibit mutagenic translesion synthesis. Chatterjee N, D'Souza S, Shabab M, Harris CA, Hilinski GJ, Verdine GL, Walker GC. Environ Mol Mutagen 61 830-836 (2020)
  40. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase. Stodola JL, Stith CM, Burgers PM. J Biol Chem 291 11698-11705 (2016)
  41. Effects of the N terminus of mouse DNA polymerase κ on the bypass of a guanine-benzo[a]pyrenyl adduct. Liu Y, Ma X, Guo C. J Biochem 159 471-479 (2016)
  42. Yeast DNA polymerase η possesses two PIP-like motifs that bind PCNA and Rad6-Rad18 with different specificities. Ripley BM, Reusch DT, Washington MT. DNA Repair (Amst) 95 102968 (2020)
  43. Determination of DNA lesion bypass using a ChIP-based assay. Wu D, Banerjee A, Cai S, Li N, Han C, Bai X, Zhang J, Wang QE. DNA Repair (Amst) 108 103230 (2021)
  44. Genetic and physical interactions between Polη and Rev1 in response to UV-induced DNA damage in mammalian cells. Bi T, Niu X, Qin C, Xiao W. Sci Rep 11 21364 (2021)
  45. REV7 Monomer Is Unable to Participate in Double Strand Break Repair and Translesion Synthesis but Suppresses Mitotic Errors. Vassel FM, Laverty DJ, Bian K, Piett CG, Hemann MT, Walker GC, Nagel ZD. Int J Mol Sci 24 15799 (2023)