4f12 Citations

Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2.

Nat Neurosci 15 970-8 (2012)
Cited: 52 times
EuropePMC logo PMID: 22660477

Abstract

Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA(B) receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA(B) receptor has been implicated in several neurological disorders. GABA(B) receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA(B) receptor that is unique to the GABAergic system.

Reviews - 4f12 mentioned but not cited (2)

  1. Molecular mechanisms of metabotropic GABAB receptor function. Shaye H, Stauch B, Gati C, Cherezov V. Sci Adv 7 eabg3362 (2021)
  2. Survey of Drug Oxidation Activities in Hepatic and Intestinal Microsomes of Individual Common Marmosets, a New Nonhuman Primate Animal Model. Uehara S, Oshio T, Nakanishi K, Tomioka E, Suzuki M, Inoue T, Uno Y, Sasaki E, Yamazaki H. Curr Drug Metab 20 103-113 (2019)

Articles - 4f12 mentioned but not cited (14)

  1. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Geisler M, Kolukisaoglu HU, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kalman Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B. Mol. Biol. Cell 14 4238-4249 (2003)
  2. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Dhillon A, Lever M, Lloyd KG, Albert DB, Sogin ML, Teske A. Appl. Environ. Microbiol. 71 4592-4601 (2005)
  3. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA, Pin JP, Fan QR. Nat. Neurosci. 15 970-978 (2012)
  4. Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230. MacDonald NJ, Nguyen V, Shimp R, Reiter K, Herrera R, Burkhardt M, Muratova O, Kumar K, Aebig J, Rausch K, Lambert L, Dawson N, Sattabongkot J, Ambroggio X, Duffy PE, Wu Y, Narum DL. J. Biol. Chem. 291 19913-19922 (2016)
  5. Structure and function of a malaria transmission blocking vaccine targeting Pfs230 and Pfs230-Pfs48/45 proteins. Singh K, Burkhardt M, Nakuchima S, Herrera R, Muratova O, Gittis AG, Kelnhofer E, Reiter K, Smelkinson M, Veltri D, Swihart BJ, Shimp R, Nguyen V, Zhang B, MacDonald NJ, Duffy PE, Garboczi DN, Narum DL. Commun Biol 3 395 (2020)
  6. Age-dependent expression of stress and antimicrobial genes in the hemocytes and siphon tissue of the Antarctic bivalve, Laternula elliptica, exposed to injury and starvation. Husmann G, Abele D, Rosenstiel P, Clark MS, Kraemer L, Philipp EE. Cell Stress Chaperones 19 15-32 (2014)
  7. Nanobody generation and structural characterization of Plasmodium falciparum 6-cysteine protein Pf12p. Dietrich MH, Chan LJ, Adair A, Keremane S, Pymm P, Lo AW, Cao YC, Tham WH. Biochem J 478 579-595 (2021)
  8. A reproducible picture of open access health facility data in Africa and R tools to support improvement. South A, Dicko A, Herringer M, Macharia PM, Maina J, Okiro EA, Snow RW, van der Walt A. Wellcome Open Res 5 157 (2020)
  9. A practical strategy to develop isoform-selective near-infrared fluorescent probes for human cytochrome P450 enzymes. Feng L, Tian X, Yao D, Yu Z, Huo X, Tian Z, Ning J, Cui J, James TD, Ma X. Acta Pharm Sin B 12 1976-1986 (2022)
  10. Computational analysis of non-coding RNAs in Alzheimer's disease. Ashraf GM, Ganash M, Athanasios A. Bioinformation 15 351-357 (2019)
  11. Evaluation of Luminogenic Substrates as Probe Substrates for Bacterial Cytochrome P450 Enzymes: Application to Mycobacterium tuberculosis. Ortega Ugalde S, Ma D, Cali JJ, Commandeur JNM. SLAS Discov 24 745-754 (2019)
  12. Nanobodies against Pfs230 block Plasmodium falciparum transmission. Dietrich MH, Gabriela M, Reaksudsan K, Dixon MWA, Chan LJ, Adair A, Trickey S, O'Neill MT, Tan LL, Lopaticki S, Healer J, Keremane S, Cowman AF, Tham WH. Biochem J 479 2529-2546 (2022)
  13. Outer membrane protein complex as a carrier for malaria transmission blocking antigen Pfs230. Scaria PV, Rowe CG, Chen BB, Muratova OV, Fischer ER, Barnafo EK, Anderson CF, Zaidi IU, Lambert LE, Lucas BJ, Nahas DD, Narum DL, Duffy PE. NPJ Vaccines 4 24 (2019)
  14. Potent transmission-blocking monoclonal antibodies from naturally exposed individuals target a conserved epitope on Plasmodium falciparum Pfs230. Ivanochko D, Fabra-García A, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Newton J, Semesi A, de Bruijni M, Bolscher J, Ramjith J, Szabat M, Vogt S, Kraft L, Duncan S, Lee SM, Kamya MR, Feeney ME, Jagannathan P, Greenhouse B, Sauerwein RW, Richter King C, MacGill RS, Bousema T, Jore MM, Julien JP. Immunity 56 420-432.e7 (2023)


Reviews citing this publication (20)

  1. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ. Pharmacol. Rev. 65 967-986 (2013)
  2. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Conigrave AD, Ward DT. Best Pract. Res. Clin. Endocrinol. Metab. 27 315-331 (2013)
  3. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Milligan G. Mol. Pharmacol. 84 158-169 (2013)
  4. Organization and functions of mGlu and GABAB receptor complexes. Pin JP, Bettler B. Nature 540 60-68 (2016)
  5. Mechanisms of conotoxin inhibition of N-type (Ca(v)2.2) calcium channels. Adams DJ, Berecki G. Biochim. Biophys. Acta 1828 1619-1628 (2013)
  6. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Xu C, Zhang W, Rondard P, Pin JP, Liu J. Front Pharmacol 5 12 (2014)
  7. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Krieger J, Bahar I, Greger IH. Biophys. J. 109 1136-1148 (2015)
  8. Activation of the γ-Aminobutyric Acid Type B (GABA(B)) Receptor by Agonists and Positive Allosteric Modulators. Brown KM, Roy KK, Hockerman GH, Doerksen RJ, Colby DA. J Med Chem 58 6336-6347 (2015)
  9. Asymmetric perturbations of signalling oligomers. Maksay G, Tőke O. Prog. Biophys. Mol. Biol. 114 153-169 (2014)
  10. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Leach K, Gregory KJ. Pharmacol. Res. 116 105-118 (2017)
  11. Structural biology of GABAB receptor. Frangaj A, Fan QR. Neuropharmacology 136 68-79 (2018)
  12. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Zhou Y, Meng J, Xu C, Liu J. Front Cell Dev Biol 9 611443 (2021)
  13. G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Daniel JT, Clark RJ. Toxins (Basel) 9 (2017)
  14. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. Pharmacol Rev 72 558-604 (2020)
  15. Diversity of structure and function of GABAB receptors: a complexity of GABAB-mediated signaling. Terunuma M. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 94 390-411 (2018)
  16. Natural antisense transcripts in diseases: From modes of action to targeted therapies. Wanowska E, Kubiak MR, Rosikiewicz W, Makałowska I, Szcześniak MW. Wiley Interdiscip Rev RNA 9 (2018)
  17. Structural Basis of GABAB Receptor Regulation and Signaling. Fritzius T, Stawarski M, Isogai S, Bettler B. Curr Top Behav Neurosci 52 19-37 (2022)
  18. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Gerbino A, Colella M. Int J Mol Sci 19 (2018)
  19. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Dunn HA, Orlandi C, Martemyanov KA. Pharmacol. Rev. 71 503-519 (2019)
  20. The GABAB Receptor-Structure, Ligand Binding and Drug Development. Evenseth LSM, Gabrielsen M, Sylte I. Molecules 25 (2020)

Articles citing this publication (16)

  1. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ, CGTP Collaborators. Br. J. Pharmacol. 170 1459-1581 (2013)
  2. Structural mechanism of ligand activation in human GABA(B) receptor. Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Nature 504 254-259 (2013)
  3. Structural mechanism of ligand activation in human calcium-sensing receptor. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Elife 5 (2016)
  4. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W. Neuropharmacology 88 134-144 (2015)
  5. Class C G protein-coupled receptors: reviving old couples with new partners. Møller TC, Moreno-Delgado D, Pin JP, Kniazeff J. Biophys Rep 3 57-63 (2017)
  6. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M. PLoS ONE 12 e0173889 (2017)
  7. Structure of human GABAB receptor in an inactive state. Park J, Fu Z, Frangaj A, Liu J, Mosyak L, Shen T, Slavkovich VN, Ray KM, Taura J, Cao B, Geng Y, Zuo H, Kou Y, Grassucci R, Chen S, Liu Z, Lin X, Williams JP, Rice WJ, Eng ET, Huang RK, Soni RK, Kloss B, Yu Z, Javitch JA, Hendrickson WA, Slesinger PA, Quick M, Graziano J, Yu H, Fiehn O, Clarke OB, Frank J, Fan QR. Nature 584 304-309 (2020)
  8. Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Zheng S, Abreu N, Levitz J, Kruse AC. Nature 567 127-131 (2019)
  9. PTH hypersecretion triggered by a GABAB1 and Ca2+-sensing receptor heterocomplex in hyperparathyroidism. Chang W, Tu CL, Jean-Alphonse FG, Herberger A, Cheng Z, Hwong J, Ho H, Li A, Wang D, Liu H, White AD, Suh I, Shen W, Duh QY, Khanafshar E, Shoback DM, Xiao K, Vilardaga JP. Nat Metab 2 243-255 (2020)
  10. Biophysical and functional characterization of the N-terminal domain of the cat T1R1 umami taste receptor expressed in Escherichia coli. Belloir C, Savistchenko J, Neiers F, Taylor AJ, McGrane S, Briand L. PLoS ONE 12 e0187051 (2017)
  11. Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Reyes MM, Gravina SA, Hayes JE. Chem. Senses 44 571-582 (2019)
  12. Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Jobin ML, Siddig S, Koszegi Z, Lanoiselée Y, Khayenko V, Sungkaworn T, Werner C, Seier K, Misigaiski C, Mantovani G, Sauer M, Maric HM, Calebiro D. Nat Commun 14 34 (2023)
  13. GABAB1e promotes the malignancy of human cancer cells by targeting the tyrosine phosphatase PTPN12. Wei B, Zhu Y, Yang P, Han Y, Wang S, Wang X, Xia S, Song X, Zhang Z, Wang S, Rondard P, Pin JP, Jiang X, Liu J. iScience 24 103311 (2021)
  14. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Schamber MR, Vafabakhsh R. Nat Commun 13 2194 (2022)
  15. Single-Molecule Fluorescence Imaging Reveals GABAB Receptor Aggregation State Changes. Luo F, Qin G, Wang L, Fang X. Front Chem 9 779940 (2021)
  16. Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca2+ ions and L-tryptophan. Ling S, Shi P, Liu S, Meng X, Zhou Y, Sun W, Chang S, Zhang X, Zhang L, Shi C, Sun D, Liu L, Tian C. Cell Res (2021)