4dre Citations

Towards a new tuberculosis drug: pyridomycin - nature's isoniazid.

EMBO Mol Med 4 1032-42 (2012)
Related entries: 4dqu, 4dti

Cited: 95 times
EuropePMC logo PMID: 22987724

Abstract

Tuberculosis, a global threat to public health, is becoming untreatable due to widespread drug resistance to frontline drugs such as the InhA-inhibitor isoniazid. Historically, by inhibiting highly vulnerable targets, natural products have been an important source of antibiotics including potent anti-tuberculosis agents. Here, we describe pyridomycin, a compound produced by Dactylosporangium fulvum with specific cidal activity against mycobacteria. By selecting pyridomycin-resistant mutants of Mycobacterium tuberculosis, whole-genome sequencing and genetic validation, we identified the NADH-dependent enoyl- (Acyl-Carrier-Protein) reductase InhA as the principal target and demonstrate that pyridomycin inhibits mycolic acid synthesis in M. tuberculosis. Furthermore, biochemical and structural studies show that pyridomycin inhibits InhA directly as a competitive inhibitor of the NADH-binding site, thereby identifying a new, druggable pocket in InhA. Importantly, the most frequently encountered isoniazid-resistant clinical isolates remain fully susceptible to pyridomycin, thus opening new avenues for drug development. →See accompanying article http://dx.doi.org/10.1002/emmm.201201811.

Reviews - 4dre mentioned but not cited (1)

  1. In Silico Strategies in Tuberculosis Drug Discovery. Macalino SJY, Billones JB, Organo VG, Carrillo MCO. Molecules 25 E665 (2020)

Articles - 4dre mentioned but not cited (5)

  1. Towards a new tuberculosis drug: pyridomycin - nature's isoniazid. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Röttger S, Altmann KH, Cole ST. EMBO Mol Med 4 1032-1042 (2012)
  2. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles. Kouassi AF, Kone M, Keita M, Esmel A, Megnassan E, N'Guessan YT, Frecer V, Miertus S. Int J Mol Sci 16 29744-29771 (2015)
  3. Synthesis of novel naphthalene-heterocycle hybrids with potent antitumor, anti-inflammatory and antituberculosis activities. Abozeid MA, El-Sawi AA, Abdelmoteleb M, Awad H, Abdel-Aziz MM, Hassan Abdel-Rahman AR, Ibrahim El-Desoky ES. RSC Adv 10 42998-43009 (2020)
  4. The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (FabI). Radka CD, Frank MW, Yao J, Seetharaman J, Miller DJ, Rock CO. J Biol Chem 295 7635-7652 (2020)
  5. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Predicted Pharmacokinetic Profiles. Kouman KC, Keita M, Kre N'Guessan R, Owono Owono LC, Megnassan E, Frecer V, Miertus S. Int J Mol Sci 20 E4730 (2019)


Reviews citing this publication (40)

  1. Mycolic acids: structures, biosynthesis, and beyond. Marrakchi H, Lanéelle MA, Daffé M. Chem Biol 21 67-85 (2014)
  2. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Hoagland DT, Liu J, Lee RB, Lee RE. Adv Drug Deliv Rev 102 55-72 (2016)
  3. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Vilchèze C, Jacobs WR. Microbiol Spectr 2 MGM2-0014-2013 (2014)
  4. Tuberculosis drug discovery in the post-post-genomic era. Lechartier B, Rybniker J, Zumla A, Cole ST. EMBO Mol Med 6 158-168 (2014)
  5. The mycobacterial cell envelope-lipids. Jackson M. Cold Spring Harb Perspect Med 4 a021105 (2014)
  6. The tuberculosis drug discovery and development pipeline and emerging drug targets. Mdluli K, Kaneko T, Upton A. Cold Spring Harb Perspect Med 5 a021154 (2015)
  7. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Jackson M, McNeil MR, Brennan PJ. Future Microbiol 8 855-875 (2013)
  8. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. North EJ, Jackson M, Lee RE. Curr Pharm Des 20 4357-4378 (2014)
  9. Strategies for target identification of antimicrobial natural products. Farha MA, Brown ED. Nat Prod Rep 33 668-680 (2016)
  10. Whole-genome sequencing targets drug-resistant bacterial infections. Punina NV, Makridakis NM, Remnev MA, Topunov AF. Hum Genomics 9 19 (2015)
  11. Repurposing approved drugs on the pathway to novel therapies. Schein CH. Med Res Rev 40 586-605 (2020)
  12. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Singh V, Mizrahi V. Drug Discov Today 22 503-509 (2017)
  13. New antibiotics from Nature's chemical inventory. Wencewicz TA. Bioorg Med Chem 24 6227-6252 (2016)
  14. Tuberculosis: From an incurable scourge to a curable disease - journey over a millennium. Sharma SK, Mohan A. Indian J Med Res 137 455-493 (2013)
  15. Emerging trends in the discovery of natural product antibacterials. Bologa CG, Ursu O, Oprea TI, Melançon CE, Tegos GP. Curr Opin Pharmacol 13 678-687 (2013)
  16. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol Mol Biol Rev 83 e00038-18 (2019)
  17. The application of tetracyclineregulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Evans JC, Mizrahi V. Front Microbiol 6 812 (2015)
  18. Trends in discovery of new drugs for tuberculosis therapy. Riccardi G, Pasca MR. J Antibiot (Tokyo) 67 655-659 (2014)
  19. Tuberculosis drug discovery and emerging targets. Mdluli K, Kaneko T, Upton A. Ann N Y Acad Sci 1323 56-75 (2014)
  20. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Le Chevalier F, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Future Microbiol 9 969-985 (2014)
  21. Addressing the Challenges of Tuberculosis: A Brief Historical Account. Al-Humadi HW, Al-Saigh RJ, Al-Humadi AW. Front Pharmacol 8 689 (2017)
  22. A new 'golden age' for the antitubercular target InhA. Rožman K, Sosič I, Fernandez R, Young RJ, Mendoza A, Gobec S, Encinas L. Drug Discov Today 22 492-502 (2017)
  23. Learning from the past for TB drug discovery in the future. Mikušová K, Ekins S. Drug Discov Today 22 534-545 (2017)
  24. Recent developments in natural product-based drug discovery for tuberculosis. Dong M, Pfeiffer B, Altmann KH. Drug Discov Today 22 585-591 (2017)
  25. Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities. Luo L, Yang J, Wang C, Wu J, Li Y, Zhang X, Li H, Zhang H, Zhou Y, Lu A, Chen S. Sci China Life Sci 65 1123-1145 (2022)
  26. Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Adeniji AA, Knoll KE, Loots DT. Appl Microbiol Biotechnol 104 5633-5662 (2020)
  27. Genetic Approaches to Facilitate Antibacterial Drug Development. Schnappinger D. Cold Spring Harb Perspect Med 5 a021139 (2015)
  28. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Ang ML, Murima P, Pethe K. Arch Pharm Res 38 1702-1717 (2015)
  29. RETRACTED: Targeting Mycobacterial Enzymes with Natural Products. Sieniawska E. Chem Biol 22 1288-1300 (2015)
  30. Mining Fatty Acid Biosynthesis for New Antimicrobials. Radka CD, Rock CO. Annu Rev Microbiol 76 281-304 (2022)
  31. Target discovery focused approaches to overcome bottlenecks in the exploitation of antimycobacterial natural products. Baptista R, Bhowmick S, Nash RJ, Baillie L, Mur LA. Future Med Chem 10 811-822 (2018)
  32. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Mukherjee R, Chandra Pal A, Banerjee M. Tuberculosis (Edinb) 106 44-52 (2017)
  33. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Bhagwat A, Deshpande A, Parish T. Front Cell Infect Microbiol 12 974101 (2022)
  34. Is IQG-607 a Potential Metallodrug or Metallopro-Drug With a Defined Molecular Target in Mycobacterium tuberculosis? Abbadi BL, Rodrigues-Junior VDS, Dadda ADS, Pissinate K, Villela AD, Campos MM, Lopes LGF, Bizarro CV, Machado P, Sousa EHS, Basso LA. Front Microbiol 9 880 (2018)
  35. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. Yang J, Zhang L, Qiao W, Luo Y. MedComm (2020) 4 e353 (2023)
  36. Bacterial Enoyl-Reductases: The Ever-Growing List of Fabs, Their Mechanisms and Inhibition. Hopf FSM, Roth CD, de Souza EV, Galina L, Czeczot AM, Machado P, Basso LA, Bizarro CV. Front Microbiol 13 891610 (2022)
  37. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. Mol Biomed 3 48 (2022)
  38. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Ostroumova OS, Efimova SS. Antibiotics (Basel) 12 1716 (2023)
  39. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolites 14 63 (2024)
  40. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Alcaraz M, Edwards TE, Kremer L. Expert Rev Anti Infect Ther 21 813-829 (2023)

Articles citing this publication (49)

  1. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Hartkoorn RC, Uplekar S, Cole ST. Antimicrob Agents Chemother 58 2979-2981 (2014)
  2. Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, König C, Ammerman NC, Barrio MB, Borchers K, Bordon-Pallier F, Brönstrup M, Courtemanche G, Gerlitz M, Geslin M, Hammann P, Heinz DW, Hoffmann H, Klieber S, Kohlmann M, Kurz M, Lair C, Matter H, Nuermberger E, Tyagi S, Fraisse L, Grosset JH, Lagrange S, Müller R. Science 348 1106-1112 (2015)
  3. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, Ozan VB, Senturk GH, Cokol M, Yeh P, Toprak E. Mol Biol Evol 31 2387-2401 (2014)
  4. Systems-level antimicrobial drug and drug synergy discovery. Roemer T, Boone C. Nat Chem Biol 9 222-231 (2013)
  5. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Rybniker J, Vocat A, Sala C, Busso P, Pojer F, Benjak A, Cole ST. Nat Commun 6 7659 (2015)
  6. The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. Singh V, Donini S, Pacitto A, Sala C, Hartkoorn RC, Dhar N, Keri G, Ascher DB, Mondésert G, Vocat A, Lupien A, Sommer R, Vermet H, Lagrange S, Buechler J, Warner DF, McKinney JD, Pato J, Cole ST, Blundell TL, Rizzi M, Mizrahi V. ACS Infect Dis 3 5-17 (2017)
  7. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Zhang M, Sala C, Hartkoorn RC, Dhar N, Mendoza-Losana A, Cole ST. Antimicrob Agents Chemother 56 5782-5789 (2012)
  8. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Manjunatha UH, S Rao SP, Kondreddi RR, Noble CG, Camacho LR, Tan BH, Ng SH, Ng PS, Ma NL, Lakshminarayana SB, Herve M, Barnes SW, Yu W, Kuhen K, Blasco F, Beer D, Walker JR, Tonge PJ, Glynne R, Smith PW, Diagana TT. Sci Transl Med 7 269ra3 (2015)
  9. Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Hartkoorn RC, Pojer F, Read JA, Gingell H, Neres J, Horlacher OP, Altmann KH, Cole ST. Nat Chem Biol 10 96-98 (2014)
  10. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection. Tamer YT, Gaszek IK, Abdizadeh H, Batur TA, Reynolds KA, Atilgan AR, Atilgan C, Toprak E. Mol Biol Evol 36 1533-1550 (2019)
  11. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. Martínez-Hoyos M, Perez-Herran E, Gulten G, Encinas L, Álvarez-Gómez D, Alvarez E, Ferrer-Bazaga S, García-Pérez A, Ortega F, Angulo-Barturen I, Rullas-Trincado J, Blanco Ruano D, Torres P, Castañeda P, Huss S, Fernández Menéndez R, González Del Valle S, Ballell L, Barros D, Modha S, Dhar N, Signorino-Gelo F, McKinney JD, García-Bustos JF, Lavandera JL, Sacchettini JC, Jimenez MS, Martín-Casabona N, Castro-Pichel J, Mendoza-Losana A. EBioMedicine 8 291-301 (2016)
  12. TB Mobile: a mobile app for anti-tuberculosis molecules with known targets. Ekins S, Clark AM, Sarker M. J Cheminform 5 13 (2013)
  13. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Kumar D, Beena, Khare G, Kidwai S, Tyagi AK, Singh R, Rawat DS. Eur J Med Chem 81 301-313 (2014)
  14. A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens. Farhat MR, Shapiro BJ, Sheppard SK, Colijn C, Murray M. Genome Med 6 101 (2014)
  15. The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. Boldrin F, Ventura M, Degiacomi G, Ravishankar S, Sala C, Svetlikova Z, Ambady A, Dhar N, Kordulakova J, Zhang M, Serafini A, Vishwas KG, Kolly GS, Kumar N, Palù G, Guerin ME, Mikusova K, Cole ST, Manganelli R. J Bacteriol 196 3441-3451 (2014)
  16. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ. J Chem Inf Model 55 645-659 (2015)
  17. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Plé C, Tam HK, Vieira Da Cruz A, Compagne N, Jiménez-Castellanos JC, Müller RT, Pradel E, Foong WE, Malloci G, Ballée A, Kirchner MA, Moshfegh P, Herledan A, Herrmann A, Deprez B, Willand N, Vargiu AV, Pos KM, Flipo M, Hartkoorn RC. Nat Commun 13 115 (2022)
  18. NapM, a new nucleoid-associated protein, broadly regulates gene expression and affects mycobacterial resistance to anti-tuberculosis drugs. Liu Y, Wang H, Cui T, Zhou X, Jia Y, Zhang H, He ZG. Mol Microbiol 101 167-181 (2016)
  19. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Chollet A, Mourey L, Lherbet C, Delbot A, Julien S, Baltas M, Bernadou J, Pratviel G, Maveyraud L, Bernardes-Génisson V. J Struct Biol 190 328-337 (2015)
  20. Discovery of Mycobacterium tuberculosis InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. Štular T, Lešnik S, Rožman K, Schink J, Zdouc M, Ghysels A, Liu F, Aldrich CC, Haupt VJ, Salentin S, Daminelli S, Schroeder M, Langer T, Gobec S, Janežič D, Konc J. J Med Chem 59 11069-11078 (2016)
  21. Design, synthesis and structure-activity relationship study of wollamide B; a new potential anti TB agent. Asfaw H, Laqua K, Walkowska AM, Cunningham F, Martinez-Martinez MS, Cuevas-Zurita JC, Ballell-Pages L, Imming P. PLoS One 12 e0176088 (2017)
  22. Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Xia Y, Zhou Y, Carter DS, McNeil MB, Choi W, Halladay J, Berry PW, Mao W, Hernandez V, O'Malley T, Korkegian A, Sunde B, Flint L, Woolhiser LK, Scherman MS, Gruppo V, Hastings C, Robertson GT, Ioerger TR, Sacchettini J, Tonge PJ, Lenaerts AJ, Parish T, Alley M. Life Sci Alliance 1 e201800025 (2018)
  23. Novel Pharmacological Activity of Artesunate and Artemisinin: Their Potential as Anti-Tubercular Agents. Choi WH. J Clin Med 6 E30 (2017)
  24. Synthesis and antimycobacterial activity of 2,1'-dihydropyridomycins. Horlacher OP, Hartkoorn RC, Cole ST, Altmann KH. ACS Med Chem Lett 4 264-268 (2013)
  25. The Redox State Regulates the Conformation of Rv2466c to Activate the Antitubercular Prodrug TP053. Albesa-Jové D, Comino N, Tersa M, Mohorko E, Urresti S, Dainese E, Chiarelli LR, Pasca MR, Manganelli R, Makarov V, Riccardi G, Svergun DI, Glockshuber R, Guerin ME. J Biol Chem 290 31077-31089 (2015)
  26. Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against Mycobacterium tuberculosis. Choi WH. Asian Pac J Trop Med 9 125-129 (2016)
  27. Characterization of Mycolic Acids in Total Fatty Acid Methyl Ester Fractions from Mycobacterium Species by High Resolution MALDI-TOFMS. Teramoto K, Suga M, Sato T, Wada T, Yamamoto A, Fujiwara N. Mass Spectrom (Tokyo) 4 A0035 (2015)
  28. Examining the role of protein structural dynamics in drug resistance in Mycobacterium tuberculosis. Shaw DJ, Hill RE, Simpson N, Husseini FS, Robb K, Greetham GM, Towrie M, Parker AW, Robinson D, Hirst JD, Hoskisson PA, Hunt NT. Chem Sci 8 8384-8399 (2017)
  29. Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis. Lone MY, Athar M, Gupta VK, Jha PC. J Mol Graph Model 76 172-180 (2017)
  30. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Angelova VT, Pencheva T, Vassilev N, K-Yovkova E, Mihaylova R, Petrov B, Valcheva V. Antibiotics (Basel) 11 562 (2022)
  31. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway. Huang T, Li L, Brock NL, Deng Z, Lin S. Chembiochem 17 1421-1425 (2016)
  32. Identification of InhA inhibitors: A combination of virtual screening, molecular dynamics simulations and quantum chemical studies. Lone MY, Manhas A, Athar M, Jha PC. J Biomol Struct Dyn 36 2951-2965 (2018)
  33. Intragenic Distribution of IS6110 in Clinical Mycobacterium tuberculosis Strains: Bioinformatic Evidence for Gene Disruption Leading to Underdiagnosed Antibiotic Resistance. Antoine R, Gaudin C, Hartkoorn RC. Microbiol Spectr 9 e0001921 (2021)
  34. A selective method for optimizing ensemble docking-based experiments on an InhA Fully-Flexible receptor model. De Paris R, Vahl Quevedo C, Ruiz DD, Gargano F, de Souza ON. BMC Bioinformatics 19 235 (2018)
  35. Identification and optimization of a new series of anti-tubercular quinazolinones. Couturier C, Lair C, Pellet A, Upton A, Kaneko T, Perron C, Cogo E, Menegotto J, Bauer A, Scheiper B, Lagrange S, Bacqué E. Bioorg Med Chem Lett 26 5290-5299 (2016)
  36. Identification of the anti-mycobacterial functional properties of piperidinol derivatives. Guy CS, Tichauer E, Kay GL, Phillips DJ, Bailey TL, Harrison J, Furze CM, Millard AD, Gibson MI, Pallen MJ, Fullam E. Br J Pharmacol 174 2183-2193 (2017)
  37. Letter KatG as Counterselection Marker for Nontuberculous Mycobacteria. Gagliardi A, Selchow P, Luthra S, Schäfle D, Schulthess B, Sander P. Antimicrob Agents Chemother 64 e02508-19 (2020)
  38. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. Matsa R, Makam P, Sethi G, Thottasseri AA, Kizhakkandiyil AR, Ramadas K, Mariappan V, Pillai AB, Kannan T. RSC Adv 12 18333-18346 (2022)
  39. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase. Neckles C, Pschibul A, Lai CT, Hirschbeck M, Kuper J, Davoodi S, Zou J, Liu N, Pan P, Shah S, Daryaee F, Bommineni GR, Lai C, Simmerling C, Kisker C, Tonge PJ. Biochemistry 55 2992-3006 (2016)
  40. Antimycobacterial activity of an anthracycline produced by an endophyte isolated from Amphipterygium adstringens. Trenado-Uribe M, Silva-Miranda M, Rivero-Cruz JF, Rodríguez-Peña K, Espitia-Pinzón CI, Rodríguez-Sanoja R, Sánchez S. Mol Biol Rep 45 2563-2570 (2018)
  41. Identification and Characterization of pantocin wh-1, a Novel Cyclic Polypeptide Produced by Pantoea dispersa W18. Teng T, Li X, Zhang L, Li Y. Molecules 25 E485 (2020)
  42. HflX is a GTPase that controls hypoxia-induced replication arrest in slow-growing mycobacteria. Ngan JYG, Pasunooti S, Tse W, Meng W, Ngan SFC, Jia H, Lin JQ, Ng SW, Jaafa MT, Cho SLS, Lim J, Koh HQV, Abdul Ghani N, Pethe K, Sze SK, Lescar J, Alonso S. Proc Natl Acad Sci U S A 118 e2006717118 (2021)
  43. Reinvestigation of the structure-activity relationships of isoniazid. Hegde P, Boshoff HIM, Rusman Y, Aragaw WW, Salomon CE, Dick T, Aldrich CC. Tuberculosis (Edinb) 129 102100 (2021)
  44. The anti-tubercular activity of Melia azedarach L. and Lobelia chinensis Lour. and their potential as effective anti-Mycobacterium tuberculosis candidate agents. Choi WH, Lee IA. Asian Pac J Trop Biomed 6 830-835 (2016)
  45. A Novel Natural Siderophore Antibiotic Conjugate Reveals a Chemical Approach to Macromolecule Coupling. Caradec T, Anoz-Carbonell E, Petrov R, Billamboz M, Antraygues K, Cantrelle FX, Boll E, Beury D, Hot D, Drobecq H, Trivelli X, Hartkoorn RC. ACS Cent Sci 9 2138-2149 (2023)
  46. Characterization of Pyridomycin B Reveals the Formation of Functional Groups in Antimycobacterial Pyridomycin. Huang T, Zhou Z, Wei M, Chen L, Xiao Z, Deng Z, Lin S. Appl Environ Microbiol 88 e0203521 (2022)
  47. Facing Antitubercular Resistance: Identification of Potential Direct Inhibitors Targeting InhA Enzyme and Generation of 3D-pharmacophore Model by in silico Approach. El Haddoumi G, Mansouri M, Bendani H, Bouricha EM, Kandoussi I, Belyamani L, Ibrahimi A. Adv Appl Bioinform Chem 16 49-59 (2023)
  48. Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. Anagani B, Singh J, Bassin JP, Besra GS, Benham C, Reddy TRK, Cox JAG, Goyal M. Cell Surf 6 100041 (2020)
  49. Introducing Broadened Antibacterial Activity to Rhodanine Derivatives Targeting Enoyl-Acyl Carrier Protein Reductase. Sun ZG, Xu YJ, Xu JF, Liu QX, Yang YS, Zhu HL. Chem Pharm Bull (Tokyo) 67 125-129 (2019)