4d7u Citations

Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity.

Abstract

The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose β-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu(2+) center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation.

Reviews - 4d7u mentioned but not cited (4)

  1. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Chem Rev 118 2593-2635 (2018)
  2. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Front Microbiol 9 1080 (2018)
  3. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. Frandsen KE, Lo Leggio L. IUCrJ 3 448-467 (2016)
  4. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Int J Mol Sci 24 6368 (2023)

Articles - 4d7u mentioned but not cited (28)

  1. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Frandsen KE, Simmons TJ, Dupree P, Poulsen JC, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH. Nat Chem Biol 12 298-303 (2016)
  2. Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr ÅK, Payne CM, Sørlie M, Sandgren M, Eijsink VG. J Biol Chem 290 22955-22969 (2015)
  3. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Courtade G, Wimmer R, Røhr ÅK, Preims M, Felice AK, Dimarogona M, Vaaje-Kolstad G, Sørlie M, Sandgren M, Ludwig R, Eijsink VG, Aachmann FL. Proc Natl Acad Sci U S A 113 5922-5927 (2016)
  4. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, van Berkel WJ, Kabel MA, Gruppen H. Biotechnol Biofuels 9 186 (2016)
  5. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken JP, Weijers D, van Berkel WJH, Gruppen H, Kabel MA. Biotechnol Biofuels 10 121 (2017)
  6. Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. Petrović DM, Várnai A, Dimarogona M, Mathiesen G, Sandgren M, Westereng B, Eijsink VGH. J Biol Chem 294 15068-15081 (2019)
  7. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches. Nekiunaite L, Arntzen MØ, Svensson B, Vaaje-Kolstad G, Abou Hachem M. Biotechnol Biofuels 9 187 (2016)
  8. Insights into the H2 O2 -driven catalytic mechanism of fungal lytic polysaccharide monooxygenases. Hedison TM, Breslmayr E, Shanmugam M, Karnpakdee K, Heyes DJ, Green AP, Ludwig R, Scrutton NS, Kracher D. FEBS J 288 4115-4128 (2021)
  9. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity. Laurent CVFP, Sun P, Scheiblbrandner S, Csarman F, Cannazza P, Frommhagen M, van Berkel WJH, Oostenbrink C, Kabel MA, Ludwig R. Int J Mol Sci 20 E6219 (2019)
  10. LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Zarattini M, Corso M, Kadowaki MA, Monclaro A, Magri S, Milanese I, Jolivet S, de Godoy MO, Hermans C, Fagard M, Cannella D. Commun Biol 4 727 (2021)
  11. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. Monclaro AV, Petrović DM, Alves GSC, Costa MMC, Midorikawa GEO, Miller RNG, Filho EXF, Eijsink VGH, Várnai A. PLoS One 15 e0235642 (2020)
  12. Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila. Kadowaki MAS, Várnai A, Jameson JK, T Leite AE, Costa-Filho AJ, Kumagai PS, Prade RA, Polikarpov I, Eijsink VGH. PLoS One 13 e0202148 (2018)
  13. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Chen C, Chen J, Geng Z, Wang M, Liu N, Li D. Biotechnol Biofuels 11 155 (2018)
  14. An AA9-LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides. Jagadeeswaran G, Gainey L, Mort AJ. AMB Express 8 171 (2018)
  15. Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase. Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C. Biochemistry 58 1226-1235 (2019)
  16. Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation. Sun P, Laurent CVFP, Scheiblbrandner S, Frommhagen M, Kouzounis D, Sanders MG, van Berkel WJH, Ludwig R, Kabel MA. Biotechnol Biofuels 13 95 (2020)
  17. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Frandsen KEH, Tovborg M, Jørgensen CI, Spodsberg N, Rosso MN, Hemsworth GR, Garman EF, Grime GW, Poulsen JN, Batth TS, Miyauchi S, Lipzen A, Daum C, Grigoriev IV, Johansen KS, Henrissat B, Berrin JG, Lo Leggio L. J Biol Chem 294 17117-17130 (2019)
  18. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions. Calderaro F, Keser M, Akeroyd M, Bevers LE, Eijsink VGH, Várnai A, van den Berg MA. Biotechnol Biofuels 13 195 (2020)
  19. Comparison of Six Lytic Polysaccharide Monooxygenases from Thermothielavioides terrestris Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi. Tõlgo M, Hegnar OA, Østby H, Várnai A, Vilaplana F, Eijsink VGH, Olsson L. Appl Environ Microbiol 88 e0009622 (2022)
  20. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Hegnar OA, Østby H, Petrović DM, Olsson L, Várnai A, Eijsink VGH. Appl Environ Microbiol 87 e0165221 (2021)
  21. Sequence and Structural Analysis of AA9 and AA10 LPMOs: An Insight into the Basis of Substrate Specificity and Regioselectivity. Zhou X, Qi X, Huang H, Zhu H. Int J Mol Sci 20 E4594 (2019)
  22. Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis. Filandr F, Kavan D, Kracher D, Laurent CVFP, Ludwig R, Man P, Halada P. Biomolecules 10 E242 (2020)
  23. Side-by-side biochemical comparison of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare on their activity against crystalline cellulose and glucomannan. Liu B, Krishnaswamyreddy S, Muraleedharan MN, Olson Å, Broberg A, Ståhlberg J, Sandgren M. PLoS One 13 e0203430 (2018)
  24. Inhibition of the Peroxygenase Lytic Polysaccharide Monooxygenase by Carboxylic Acids and Amino Acids. Breslmayr E, Poliak P, Požgajčić A, Schindler R, Kracher D, Oostenbrink C, Ludwig R. Antioxidants (Basel) 11 1096 (2022)
  25. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Chang H, Gacias Amengual N, Botz A, Schwaiger L, Kracher D, Scheiblbrandner S, Csarman F, Ludwig R. Nat Commun 13 6258 (2022)
  26. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. Hall KR, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. J Am Chem Soc 145 18888-18903 (2023)
  27. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates. Østby H, Christensen IA, Hennum K, Várnai A, Buchinger E, Grandal S, Courtade G, Hegnar OA, Aachmann FL, Eijsink VGH. Sci Rep 13 17373 (2023)
  28. Structure of a C1/C4-oxidizing AA9 lytic polysaccharide monooxygenase from the thermophilic fungus Malbranchea cinnamomea. Mazurkewich S, Seveso A, Hüttner S, Brändén G, Larsbrink J. Acta Crystallogr D Struct Biol 77 1019-1026 (2021)


Reviews citing this publication (15)

  1. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Microbiol Mol Biol Rev 82 e00029-18 (2018)
  2. Structural diversity of lytic polysaccharide monooxygenases. Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. Curr Opin Struct Biol 44 67-76 (2017)
  3. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Lee SH, Choi DS, Kuk SK, Park CB. Angew Chem Int Ed Engl 57 7958-7985 (2018)
  4. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Eijsink VGH, Petrovic D, Forsberg Z, Mekasha S, Røhr ÅK, Várnai A, Bissaro B, Vaaje-Kolstad G. Biotechnol Biofuels 12 58 (2019)
  5. Enzymatic deconstruction of plant biomass by fungal enzymes. Kubicek CP, Kubicek EM. Curr Opin Chem Biol 35 51-57 (2016)
  6. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. Falconer RJ. J Mol Recognit 29 504-515 (2016)
  7. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Ipsen JØ, Hallas-Møller M, Brander S, Lo Leggio L, Johansen KS. Biochem Soc Trans 49 531-540 (2021)
  8. Starch-degrading polysaccharide monooxygenases. Vu VV, Marletta MA. Cell Mol Life Sci 73 2809-2819 (2016)
  9. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Zhang R. Appl Microbiol Biotechnol 104 3229-3243 (2020)
  10. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown. Monclaro AV, Filho EXF. Int J Biol Macromol 102 771-778 (2017)
  11. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose. Calderaro F, Bevers LE, van den Berg MA. Biomolecules 11 1098 (2021)
  12. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Hagemann MM, Hedegård ED. Chemistry 29 e202202379 (2023)
  13. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Forsberg Z, Courtade G. Essays Biochem 67 561-574 (2023)
  14. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. Constantinescu-Aruxandei D, Oancea F. Int J Environ Res Public Health 20 2096 (2023)
  15. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Nat Rev Chem (2024)

Articles citing this publication (46)

  1. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH. Nat Chem Biol 13 1123-1128 (2017)
  2. Extracellular electron transfer systems fuel cellulose oxidative degradation. Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludwig R. Science 352 1098-1101 (2016)
  3. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Cannella D, Möllers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C. Nat Commun 7 11134 (2016)
  4. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, Wilson LFL, Tandrup T, Tovborg M, Schnorr K, Johansen KS, Henrissat B, Walton PH, Lo Leggio L, Dupree P. Nat Commun 8 1064 (2017)
  5. The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase. Span EA, Suess DLM, Deller MC, Britt RD, Marletta MA. ACS Chem Biol 12 1095-1103 (2017)
  6. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases. Crouch LI, Labourel A, Walton PH, Davies GJ, Gilbert HJ. J Biol Chem 291 7439-7449 (2016)
  7. Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. Forsberg Z, Bissaro B, Gullesen J, Dalhus B, Vaaje-Kolstad G, Eijsink VGH. J Biol Chem 293 1397-1412 (2018)
  8. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, Jellison J, Goodell B, Alfredsen G, Westereng B, Eijsink VG, Yoshida M. Appl Environ Microbiol 82 6557-6572 (2016)
  9. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation. Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH. Protein Sci 27 1636-1650 (2018)
  10. Kinetic analysis of amino acid radicals formed in H2O2-driven CuI LPMO reoxidation implicates dominant homolytic reactivity. Jones SM, Transue WJ, Meier KK, Kelemen B, Solomon EI. Proc Natl Acad Sci U S A 117 11916-11922 (2020)
  11. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. Kracher D, Andlar M, Furtmüller PG, Ludwig R. J Biol Chem 293 1676-1687 (2018)
  12. High-resolution structure of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals a predicted linker as an integral part of the catalytic domain. Hansson H, Karkehabadi S, Mikkelsen N, Douglas NR, Kim S, Lam A, Kaper T, Kelemen B, Meier KK, Jones SM, Solomon EI, Sandgren M. J Biol Chem 292 19099-19109 (2017)
  13. Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases. Frommhagen M, Westphal AH, Hilgers R, Koetsier MJ, Hinz SWA, Visser J, Gruppen H, van Berkel WJH, Kabel MA. Appl Microbiol Biotechnol 102 1281-1295 (2018)
  14. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates. Chalak A, Villares A, Moreau C, Haon M, Grisel S, d'Orlando A, Herpoël-Gimbert I, Labourel A, Cathala B, Berrin JG. Biotechnol Biofuels 12 206 (2019)
  15. Structural Features on the Substrate-Binding Surface of Fungal Lytic Polysaccharide Monooxygenases Determine Their Oxidative Regioselectivity. Danneels B, Tanghe M, Desmet T. Biotechnol J 14 e1800211 (2019)
  16. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Stepnov AA, Forsberg Z, Sørlie M, Nguyen GS, Wentzel A, Røhr ÅK, Eijsink VGH. Biotechnol Biofuels 14 28 (2021)
  17. Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Courtade G, Ciano L, Paradisi A, Lindley PJ, Forsberg Z, Sørlie M, Wimmer R, Davies GJ, Eijsink VGH, Walton PH, Aachmann FL. Proc Natl Acad Sci U S A 117 19178-19189 (2020)
  18. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Várnai A, Umezawa K, Yoshida M, Eijsink VGH. Appl Environ Microbiol 84 e00156-18 (2018)
  19. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase. Caldararu O, Oksanen E, Ryde U, Hedegård ED. Chem Sci 10 576-586 (2019)
  20. The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay. Filandr F, Man P, Halada P, Chang H, Ludwig R, Kracher D. Biotechnol Biofuels 13 37 (2020)
  21. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization. Hüttner S, Várnai A, Petrović DM, Bach CX, Kim Anh DT, Thanh VN, Eijsink VGH, Larsbrink J, Olsson L. Appl Environ Microbiol 85 e01408-19 (2019)
  22. Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. Rieder L, Petrović D, Väljamäe P, Eijsink VGH, Sørlie M. ACS Catal 11 11685-11695 (2021)
  23. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition. Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M. FEBS J 285 2225-2242 (2018)
  24. The yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases. Ladevèze S, Haon M, Villares A, Cathala B, Grisel S, Herpoël-Gimbert I, Henrissat B, Berrin JG. Biotechnol Biofuels 10 215 (2017)
  25. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases. Muraleedharan MN, Zouraris D, Karantonis A, Topakas E, Sandgren M, Rova U, Christakopoulos P, Karnaouri A. Biotechnol Biofuels 11 296 (2018)
  26. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Rieder L, Stepnov AA, Sørlie M, Eijsink VGH. Biochemistry 60 3633-3643 (2021)
  27. A quantitative indicator diagram for lytic polysaccharide monooxygenases reveals the role of aromatic surface residues in HjLPMO9A regioselectivity. Danneels B, Tanghe M, Joosten HJ, Gundinger T, Spadiut O, Stals I, Desmet T. PLoS One 12 e0178446 (2017)
  28. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs). Frandsen KEH, Haon M, Grisel S, Henrissat B, Lo Leggio L, Berrin JG. J Biol Chem 296 100086 (2021)
  29. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. Hedegård ED, Ryde U. ACS Omega 2 536-545 (2017)
  30. An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. Corrêa TLR, Júnior AT, Wolf LD, Buckeridge MS, Dos Santos LV, Murakami MT. Biotechnol Biofuels 12 117 (2019)
  31. Letter Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases. Nekiunaite L, Isaksen T, Vaaje-Kolstad G, Abou Hachem M. FEBS Lett 590 2737-2747 (2016)
  32. Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase. Theibich YA, Sauer SPA, Leggio LL, Hedegård ED. Comput Struct Biotechnol J 19 555-567 (2021)
  33. De Novo Design of a Self-Assembled Artificial Copper Peptide that Activates and Reduces Peroxide. Mitra S, Prakash D, Rajabimoghadam K, Wawrzak Z, Prasad P, Wu T, Misra SK, Sharp JS, Garcia-Bosch I, Chakraborty S. ACS Catal 11 10267-10278 (2021)
  34. Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder. Frandsen KE, Poulsen JC, Tovborg M, Johansen KS, Lo Leggio L. Acta Crystallogr D Struct Biol 73 64-76 (2017)
  35. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry. Bissaro B, Eijsink VGH. Essays Biochem 67 575-584 (2023)
  36. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. Sun P, Valenzuela SV, Chunkrua P, Javier Pastor FI, Laurent CVFP, Ludwig R, van Berkel WJH, Kabel MA, Kabel MA. ACS Sustain Chem Eng 9 14124-14133 (2021)
  37. The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Dade CM, Douzi B, Cambillau C, Ball G, Voulhoux R, Forest KT. Acta Crystallogr D Struct Biol 78 1064-1078 (2022)
  38. Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida. Serra I, Piccinini D, Paradisi A, Ciano L, Bellei M, Bortolotti CA, Battistuzzi G, Sola M, Walton PH, Di Rocco G. Protein Sci 31 591-601 (2022)
  39. Backbone and side-chain (1)H, (13)C, and (15)N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Courtade G, Wimmer R, Dimarogona M, Sandgren M, Eijsink VG, Aachmann FL. Biomol NMR Assign 10 277-280 (2016)
  40. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases. Branch J, Rajagopal BS, Paradisi A, Yates N, Lindley PJ, Smith J, Hollingsworth K, Turnbull WB, Henrissat B, Parkin A, Berry A, Hemsworth GR. Biochem J 478 2927-2944 (2021)
  41. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. Kuusk S, Eijsink VGH, Väljamäe P. J Biol Chem 299 105094 (2023)
  42. Analysis of lytic polysaccharide monooxygenase activity in thermophilic fungi by high-performance liquid chromatography-refractive index detector. Yu W, Yu J, Li D. Front Microbiol 13 1063025 (2022)
  43. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Martinez-D'Alto A, Yan X, Detomasi TC, Sayler RI, Thomas WC, Talbot NJ, Marletta MA. Proc Natl Acad Sci U S A 120 e2215426120 (2023)
  44. Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation. Mathieu Y, Raji O, Bellemare A, Di Falco M, Nguyen TTM, Viborg AH, Tsang A, Master E, Brumer H. Biotechnol Biofuels Bioprod 16 132 (2023)
  45. Lytic Polysaccharide Monooxygenase from Talaromyces amestolkiae with an Enigmatic Linker-like Region: The Role of This Enzyme on Cellulose Saccharification. Méndez-Líter JA, Ayuso-Fernández I, Csarman F, de Eugenio LI, Míguez N, Plou FJ, Prieto A, Ludwig R, Martínez MJ. Int J Mol Sci 22 13611 (2021)
  46. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Liu Y, Ma W, Fang X. Int J Mol Sci 24 8300 (2023)