4ce4 Citations

Architecture of the large subunit of the mammalian mitochondrial ribosome.

Abstract

Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

Reviews - 4ce4 mentioned but not cited (2)

  1. 'Black sheep' that don't leave the double-stranded RNA-binding domain fold. Gleghorn ML, Maquat LE. Trends Biochem. Sci. 39 328-340 (2014)
  2. Principles for Integrative Structural Biology Studies. Rout MP, Sali A. Cell 177 1384-1403 (2019)

Articles - 4ce4 mentioned but not cited (5)

  1. Structure of the large ribosomal subunit from human mitochondria. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. Science 346 718-722 (2014)
  2. Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. Drew K, Müller CL, Bonneau R, Marcotte EM. PLoS Comput. Biol. 13 e1005625 (2017)
  3. A fragment based method for modeling of protein segments into cryo-EM density maps. Ismer J, Rose AS, Tiemann JKS, Hildebrand PW. BMC Bioinformatics 18 475 (2017)
  4. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. Nat. Methods 15 947-954 (2018)
  5. In Vitro Identification and In Vivo Confirmation of Inhibitors for Sweet Potato Chlorotic Stunt Virus RNA Silencing Suppressor, a Viral RNase III. Wang L, Poque S, Laamanen K, Saarela J, Poso A, Laitinen T, Valkonen JPT. J Virol 95 e00107-21 (2021)


Reviews citing this publication (45)

  1. Multidimensional proteomics for cell biology. Larance M, Lamond AI. Nat. Rev. Mol. Cell Biol. 16 269-280 (2015)
  2. Mechanisms of integral membrane protein insertion and folding. Cymer F, von Heijne G, White SH. J. Mol. Biol. 427 999-1022 (2015)
  3. Making proteins in the powerhouse. Hällberg BM, Larsson NG. Cell Metab. 20 226-240 (2014)
  4. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Nogales E, Scheres SH. Mol. Cell 58 677-689 (2015)
  5. Organization and Regulation of Mitochondrial Protein Synthesis. Ott M, Amunts A, Brown A. Annu. Rev. Biochem. 85 77-101 (2016)
  6. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Sinz A, Arlt C, Chorev D, Sharon M. Protein Sci. 24 1193-1209 (2015)
  7. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Sinz A. Expert Rev Proteomics 11 733-743 (2014)
  8. Structure and Function of the Mitochondrial Ribosome. Greber BJ, Ban N. Annu. Rev. Biochem. 85 103-132 (2016)
  9. Uncertainty in integrative structural modeling. Schneidman-Duhovny D, Pellarin R, Sali A. Curr. Opin. Struct. Biol. 28 96-104 (2014)
  10. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Dis Model Mech 8 509-526 (2015)
  11. N-terminal protein modifications: Bringing back into play the ribosome. Giglione C, Fieulaine S, Meinnel T. Biochimie 114 134-146 (2015)
  12. tRNA biology in mitochondria. Salinas-Giegé T, Giegé R, Giegé P. Int J Mol Sci 16 4518-4559 (2015)
  13. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. FEBS Lett. 588 2496-2503 (2014)
  14. Mitochondrial ribosome assembly in health and disease. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Cell Cycle 14 2226-2250 (2015)
  15. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Levin L, Blumberg A, Barshad G, Mishmar D. Front Genet 5 448 (2014)
  16. Computational modeling of membrane proteins. Koehler Leman J, Ulmschneider MB, Gray JJ. Proteins 83 1-24 (2015)
  17. The process of mammalian mitochondrial protein synthesis. Mai N, Chrzanowska-Lightowlers ZM, Lightowlers RN. Cell Tissue Res. 367 5-20 (2017)
  18. The ribosome challenge to the RNA world. Bowman JC, Hud NV, Williams LD. J. Mol. Evol. 80 143-161 (2015)
  19. Mitochondrial transcript maturation and its disorders. Van Haute L, Pearce SF, Powell CA, D'Souza AR, Nicholls TJ, Minczuk M. J. Inherit. Metab. Dis. 38 655-680 (2015)
  20. Toward a structural understanding of co-translational protein translocation. Voorhees RM, Hegde RS. Curr. Opin. Cell Biol. 41 91-99 (2016)
  21. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Yu C, Huang L. Anal. Chem. 90 144-165 (2018)
  22. Does functional specialization of ribosomes really exist? Ferretti MB, Karbstein K. RNA 25 521-538 (2019)
  23. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Watanabe Y, Suematsu T, Ohtsuki T. Front Genet 5 109 (2014)
  24. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Gammage PA, Moraes CT, Minczuk M. Trends Genet. 34 101-110 (2018)
  25. Mitochondrial ribosomes in cancer. Kim HJ, Maiti P, Barrientos A. Semin. Cancer Biol. 47 67-81 (2017)
  26. Ribosome Rescue Pathways in Bacteria. Müller C, Crowe-McAuliffe C, Wilson DN. Front Microbiol 12 652980 (2021)
  27. The Diseased Mitoribosome. Ferrari A, Del'Olio S, Barrientos A. FEBS Lett 595 1025-1061 (2021)
  28. Biostructural Science Inspired by Next-Generation X-Ray Sources. Gruner SM, Lattman EE. Annu Rev Biophys 44 33-51 (2015)
  29. High-Resolution Native Mass Spectrometry. Tamara S, den Boer MA, Heck AJR. Chem Rev 122 7269-7326 (2022)
  30. Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome: Hemizygous deletion of several mitochondrial genes in the 22q11.2 genomic region can lead to symptoms associated with neuropsychiatric disease. Devaraju P, Zakharenko SS. Bioessays 39 (2017)
  31. Import of ribosomal proteins into yeast mitochondria. Woellhaf MW, Hansen KG, Garth C, Herrmann JM. Biochem. Cell Biol. 92 489-498 (2014)
  32. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Kotrys AV, Szczesny RJ. Cells 9 (2019)
  33. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Kaushal PS, Sharma MR, Agrawal RK. Biochimie 114 119-126 (2015)
  34. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation. Wang J, Qiu Z, Wang Y, Li L, Guo X, Pham DT, Lincoln SF, Prud'homme RK. Beilstein J Org Chem 12 50-72 (2016)
  35. The mammalian mitochondrial epitranscriptome. Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. Biochim Biophys Acta Gene Regul Mech 1862 429-446 (2019)
  36. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  37. Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein-RNA Complexes. Leitner A, Dorn G, Allain FH. Cold Spring Harb Perspect Biol 11 (2019)
  38. Pathways to balance mitochondrial translation and protein import. Priesnitz C, Becker T. Genes Dev. 32 1285-1296 (2018)
  39. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). Pal S, Ganesan K, Eswaran S. IUBMB Life 70 947-960 (2018)
  40. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. Korostelev AA. Biochemistry (Mosc) 86 1107-1121 (2021)
  41. Mechanisms and regulation of protein synthesis in mitochondria. Kummer E, Ban N. Nat Rev Mol Cell Biol (2021)
  42. Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Tang JX, Thompson K, Taylor RW, Oláhová M. Int J Mol Sci 21 (2020)
  43. Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. Gómez-Serrano M, Camafeita E, Loureiro M, Peral B. Oxid Med Cell Longev 2018 1435934 (2018)
  44. Potential of Mitochondrial Ribosomal Genes as Cancer Biomarkers Demonstrated by Bioinformatics Results. Bao S, Wang X, Li M, Gao Z, Zheng D, Shen D, Liu L. Front Oncol 12 835549 (2022)
  45. Types and Functions of Mitoribosome-Specific Ribosomal Proteins across Eukaryotes. Scaltsoyiannes V, Corre N, Waltz F, Giegé P. Int J Mol Sci 23 3474 (2022)

Articles citing this publication (83)

  1. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Science 348 303-308 (2015)
  2. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. Nature 515 283-286 (2014)
  3. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Liu F, Rijkers DT, Post H, Heck AJ. Nat. Methods 12 1179-1184 (2015)
  4. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Félix AA, Williams EG, Jha P, Lo Sasso G, Huzard D, Aebischer P, Sandi C, Rinsch C, Auwerx J. Nat. Med. 22 879-888 (2016)
  5. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. Bartesaghi A, Matthies D, Banerjee S, Merk A, Subramaniam S. Proc. Natl. Acad. Sci. U.S.A. 111 11709-11714 (2014)
  6. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Shi Y, Fernandez-Martinez J, Tjioe E, Pellarin R, Kim SJ, Williams R, Schneidman-Duhovny D, Sali A, Rout MP, Chait BT. Mol. Cell Proteomics 13 2927-2943 (2014)
  7. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second T, Duan J, Kao A, Guan S, Vellucci D, Rychnovsky SD, Huang L. Mol. Cell Proteomics 13 3533-3543 (2014)
  8. Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Greber BJ, Gerhardy S, Leitner A, Leibundgut M, Salem M, Boehringer D, Leulliot N, Aebersold R, Panse VG, Ban N. Cell 164 91-102 (2016)
  9. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Pfeffer S, Woellhaf MW, Herrmann JM, Förster F. Nat Commun 6 6019 (2015)
  10. Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK. Proc. Natl. Acad. Sci. U.S.A. 111 7284-7289 (2014)
  11. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ, Kim SJ, Kweon GR, Kim H, Hwang JH, Lee CH, Lee SJ, Wall CE, Downes M, Evans RM, Auwerx J, Shong M. J. Cell Biol. 216 149-165 (2017)
  12. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. Richter U, Lahtinen T, Marttinen P, Suomi F, Battersby BJ. J. Cell Biol. 211 373-389 (2015)
  13. The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Tu YT, Barrientos A. Cell Rep 10 854-864 (2015)
  14. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Walzthoeni T, Joachimiak LA, Rosenberger G, Röst HL, Malmström L, Leitner A, Frydman J, Aebersold R. Nat. Methods 12 1185-1190 (2015)
  15. MPV17L2 is required for ribosome assembly in mitochondria. Dalla Rosa I, Durigon R, Pearce SF, Rorbach J, Hirst EM, Vidoni S, Reyes A, Brea-Calvo G, Minczuk M, Woellhaf MW, Herrmann JM, Huynen MA, Holt IJ, Spinazzola A. Nucleic Acids Res. 42 8500-8515 (2014)
  16. MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Rorbach J, Boesch P, Gammage PA, Nicholls TJ, Pearce SF, Patel D, Hauser A, Perocchi F, Minczuk M. Mol. Biol. Cell 25 2542-2555 (2014)
  17. Mass spec studio for integrative structural biology. Rey M, Sarpe V, Burns KM, Buse J, Baker CA, van Dijk M, Wordeman L, Bonvin AM, Schriemer DC. Structure 22 1538-1548 (2014)
  18. Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi. Itoh Y, Naschberger A, Mortezaei N, Herrmann JM, Amunts A. Nat Commun 11 5187 (2020)
  19. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes. van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J, Berninghausen O, Neupert W, Herrmann JM, Beckmann R. Genome Biol Evol 7 1235-1251 (2015)
  20. Linezolid Trough Concentrations Correlate with Mitochondrial Toxicity-Related Adverse Events in the Treatment of Chronic Extensively Drug-Resistant Tuberculosis. Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, Follman D, Wang J, Cai Y, Goldfeder LC, Olivier KN, Xie Y, Via LE, Cho SN, Barry CE, Chen RY. EBioMedicine 2 1627-1633 (2015)
  21. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. Bar-Yaacov D, Frumkin I, Yashiro Y, Chujo T, Ishigami Y, Chemla Y, Blumberg A, Schlesinger O, Bieri P, Greber B, Ban N, Zarivach R, Alfonta L, Pilpel Y, Suzuki T, Mishmar D. PLoS Biol. 14 e1002557 (2016)
  22. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. Akabane S, Ueda T, Nierhaus KH, Takeuchi N. PLoS Genet. 10 e1004616 (2014)
  23. Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. Vijayvargia R, Epand R, Leitner A, Jung TY, Shin B, Jung R, Lloret A, Singh Atwal R, Lee H, Lee JM, Aebersold R, Hebert H, Song JJ, Seong IS. Elife 5 e11184 (2016)
  24. Human mitochondrial ribosomes can switch their structural RNA composition. Rorbach J, Gao F, Powell CA, D'Souza A, Lightowlers RN, Minczuk M, Chrzanowska-Lightowlers ZM. Proc. Natl. Acad. Sci. U.S.A. 113 12198-12201 (2016)
  25. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Ahmed T, Yin Z, Bhushan S. Sci Rep 6 35793 (2016)
  26. Mechanisms of ribosome stalling by SecM at multiple elongation steps. Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Elife 4 (2015)
  27. Assignment of 2'-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). Lee KW, Bogenhagen DF. J. Biol. Chem. 289 24936-24942 (2014)
  28. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Valach M, Burger G, Gray MW, Lang BF. Nucleic Acids Res. 42 13764-13777 (2014)
  29. Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction. Richman TR, Ermer JA, Davies SM, Perks KL, Viola HM, Shearwood AM, Hool LC, Rackham O, Filipovska A. PLoS Genet. 11 e1005089 (2015)
  30. The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules. Zaganelli S, Rebelo-Guiomar P, Maundrell K, Rozanska A, Pierredon S, Powell CA, Jourdain AA, Hulo N, Lightowlers RN, Chrzanowska-Lightowlers ZM, Minczuk M, Martinou JC. J. Biol. Chem. 292 4519-4532 (2017)
  31. ECOD: new developments in the evolutionary classification of domains. Schaeffer RD, Liao Y, Cheng H, Grishin NV. Nucleic Acids Res. 45 D296-D302 (2017)
  32. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Devaraju P, Yu J, Eddins D, Mellado-Lagarde MM, Earls LR, Westmoreland JJ, Quarato G, Green DR, Zakharenko SS. Mol. Psychiatry 22 1313-1326 (2017)
  33. Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly. Bogenhagen DF, Ostermeyer-Fay AG, Haley JD, Garcia-Diaz M. Cell Rep 22 1935-1944 (2018)
  34. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Hilal T, Yamamoto H, Loerke J, Bürger J, Mielke T, Spahn CM. Nat Commun 7 13521 (2016)
  35. ECL: an exhaustive search tool for the identification of cross-linked peptides using whole database. Yu F, Li N, Yu W. BMC Bioinformatics 17 217 (2016)
  36. Global genetic determinants of mitochondrial DNA copy number. Zhang H, Singh KK. PLoS ONE 9 e105242 (2014)
  37. Response to "Ribosome Rescue and Translation Termination at Non-standard Stop Codons by ICT1 in Mammalian Mitochondria". Chrzanowska-Lightowlers ZM, Lightowlers RN. PLoS Genet. 11 e1005227 (2015)
  38. Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Kummer E, Leibundgut M, Rackham O, Lee RG, Boehringer D, Filipovska A, Ban N. Nature 560 263-267 (2018)
  39. ArfB can displace mRNA to rescue stalled ribosomes. Carbone CE, Demo G, Madireddy R, Svidritskiy E, Korostelev AA. Nat Commun 11 5552 (2020)
  40. Complexome Profiling Reveals Association of PPR Proteins with Ribosomes in the Mitochondria of Plants. Rugen N, Straube H, Franken LE, Braun HP, Eubel H. Mol Cell Proteomics 18 1345-1362 (2019)
  41. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. Li HB, Wang RX, Jiang HB, Zhang ED, Tan JQ, Xu HZ, Zhou RR, Xia XB. DNA Cell Biol. 35 680-690 (2016)
  42. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full-Length Wild-Type Tetrameric p53 Tumor Suppressor. Arlt C, Flegler V, Ihling CH, Schäfer M, Thondorf I, Sinz A. Angew. Chem. Int. Ed. Engl. 56 275-279 (2017)
  43. Overcoming stalled translation in human mitochondria. Wesolowska MT, Richter-Dennerlein R, Lightowlers RN, Chrzanowska-Lightowlers ZM. Front Microbiol 5 374 (2014)
  44. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Woellhaf MW, Sommer F, Schroda M, Herrmann JM. Mol. Biol. Cell 27 3031-3039 (2016)
  45. Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article "Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria". Takeuchi N, Nierhaus KH. PLoS Genet. 11 e1005218 (2015)
  46. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana). Shih KM, Chang CT, Chung JD, Chiang YC, Hwang SY. Front Plant Sci 9 92 (2018)
  47. HIF-1-induced mitochondrial ribosome protein L52: a mechanism for breast cancer cellular adaptation and metastatic initiation in response to hypoxia. Li X, Wang M, Li S, Chen Y, Wang M, Wu Z, Sun X, Yao L, Dong H, Song Y, Xu Y. Theranostics 11 7337-7359 (2021)
  48. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). Kayal E, Bentlage B, Collins AG. RNA Biol 13 799-809 (2016)
  49. The Chaperonin TRiC/CCT Associates with Prefoldin through a Conserved Electrostatic Interface Essential for Cellular Proteostasis. Gestaut D, Roh SH, Ma B, Pintilie G, Joachimiak LA, Leitner A, Walzthoeni T, Aebersold R, Chiu W, Frydman J. Cell 177 751-765.e15 (2019)
  50. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease. Elson JL, Smith PM, Greaves LC, Lightowlers RN, Chrzanowska-Lightowlers ZM, Taylor RW, Vila-Sanjurjo A. Mitochondrion 25 17-27 (2015)
  51. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. Yeo JH, Skinner JP, Bird MJ, Formosa LE, Zhang JG, Kluck RM, Belz GT, Chong MM. PLoS ONE 10 e0134326 (2015)
  52. An Unexpectedly Complex Mitoribosome in Andalucia godoyi, a Protist with the Most Bacteria-like Mitochondrial Genome. Valach M, Gonzalez Alcazar JA, Sarrasin M, Lang BF, Gray MW, Burger G. Mol Biol Evol 38 788-804 (2021)
  53. Knockdown of immature colon carcinoma transcript-1 inhibits proliferation of glioblastoma multiforme cells through Gap 2/mitotic phase arrest. Xie R, Zhang Y, Shen C, Cao X, Gu S, Che X. Onco Targets Ther 8 1119-1127 (2015)
  54. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Liu XR, Zhang MM, Gross ML. Chem Rev 120 4355-4454 (2020)
  55. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Schütz S, Michel E, Damberger FF, Oplová M, Peña C, Leitner A, Aebersold R, Allain FH, Panse VG. Nat Commun 9 3669 (2018)
  56. Structure of Human Mitochondrial Translation Initiation Factor 3 Bound to the Small Ribosomal Subunit. Koripella RK, Sharma MR, Haque ME, Risteff P, Spremulli LL, Agrawal RK. iScience 12 76-86 (2019)
  57. What Froze the Genetic Code? Ribas de Pouplana L, Torres AG, Rafels-Ybern À. Life (Basel) 7 (2017)
  58. Auto-phosphorylation Represses Protein Kinase R Activity. Wang D, de Weerd NA, Willard B, Polekhina G, Williams BR, Sadler AJ. Sci Rep 7 44340 (2017)
  59. Bi-allelic Mutations in the Mitochondrial Ribosomal Protein MRPS2 Cause Sensorineural Hearing Loss, Hypoglycemia, and Multiple OXPHOS Complex Deficiencies. Gardeitchik T, Mohamed M, Ruzzenente B, Karall D, Guerrero-Castillo S, Dalloyaux D, van den Brand M, van Kraaij S, van Asbeck E, Assouline Z, Rio M, de Lonlay P, Scholl-Buergi S, Wolthuis DFGJ, Hoischen A, Rodenburg RJ, Sperl W, Urban Z, Brandt U, Mayr JA, Wong S, de Brouwer APM, Nijtmans L, Munnich A, Rötig A, Wevers RA, Metodiev MD, Morava E. Am. J. Hum. Genet. 102 685-695 (2018)
  60. Evolution of Structural Biology through the Lens of Mass Spectrometry. Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Anal. Chem. 91 142-155 (2019)
  61. Genetic ablation of the mitoribosome in the malaria parasite Plasmodium falciparum sensitizes it to antimalarials that target mitochondrial functions. Ling L, Mulaka M, Munro J, Dass S, Mather MW, Riscoe MK, Llinás M, Zhou J, Ke H. J Biol Chem 295 7235-7248 (2020)
  62. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Lenarčič T, Niemann M, Ramrath DJF, Calderaro S, Flügel T, Saurer M, Leibundgut M, Boehringer D, Prange C, Horn EK, Schneider A, Ban N. Proc Natl Acad Sci U S A 119 e2114710118 (2022)
  63. MrpL35, a mitospecific component of mitoribosomes, plays a key role in cytochrome c oxidase assembly. Box JM, Kaur J, Stuart RA. Mol. Biol. Cell 28 3489-3499 (2017)
  64. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Hum Mol Genet 32 2441-2454 (2023)
  65. Puf6 primes 60S pre-ribosome nuclear export at low temperature. Gerhardy S, Oborská-Oplová M, Gillet L, Börner R, van Nues R, Leitner A, Michel E, Petkowski JJ, Granneman S, Sigel RKO, Aebersold R, Panse VG. Nat Commun 12 4696 (2021)
  66. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. BMC Biol 18 22 (2020)
  67. The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Möller-Hergt BV, Carlström A, Stephan K, Imhof A, Ott M. Mol. Biol. Cell 29 2386-2396 (2018)
  68. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome. Hillman GA, Henry MF. J Biol Chem 294 9813-9829 (2019)
  69. Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria. Pyrih J, Pánek T, Durante IM, Rašková V, Cimrhanzlová K, Kriegová E, Tsaousis AD, Eliáš M, Lukeš J. Mol Biol Evol 38 3170-3187 (2021)
  70. Elucidation of structure-function relationships in Methanocaldococcus jannaschii RNase P, a multi-subunit catalytic ribonucleoprotein. Phan HD, Norris AS, Du C, Stachowski K, Khairunisa BH, Sidharthan V, Mukhopadhyay B, Foster MP, Wysocki VH, Gopalan V. Nucleic Acids Res 50 8154-8167 (2022)
  71. Functional analyses of mitoribosome 54S subunit devoid of mitochondria-specific protein sequences. Santos B, Zeng R, Jorge SF, Ferreira-Junior JR, Barrientos A, Barros MH. Yeast 39 208-229 (2022)
  72. GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation. Wang L, Hilander T, Liu X, Tsang HY, Eriksson O, Jackson CB, Varjosalo M, Zhao H. Cell Mol Life Sci 80 361 (2023)
  73. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant. Potluri P, Procaccio V, Scheffler IE, Wallace DC. Biochim. Biophys. Acta 1857 1336-1343 (2016)
  74. Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1. Harding RJ, Deme JC, Hevler JF, Tamara S, Lemak A, Cantle JP, Szewczyk MM, Begeja N, Goss S, Zuo X, Loppnau P, Seitova A, Hutchinson A, Fan L, Truant R, Schapira M, Carroll JB, Heck AJR, Lea SM, Arrowsmith CH. Commun Biol 4 1374 (2021)
  75. Knockdown of MRPL35 promotes cell apoptosis and inhibits cell proliferation in non-small-cell lung cancer. Zhao C, Chen L, Jin Z, Liu H, Ma C, Zhou H, Xu L, Zhou S, Shi Y, Li W, Chen Y, Dou C, Wang X. BMC Pulm Med 23 507 (2023)
  76. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Van Haute L, Hendrick AG, D'Souza AR, Powell CA, Rebelo-Guiomar P, Harbour ME, Ding S, Fearnley IM, Andrews B, Minczuk M. Nucleic Acids Res. 47 10267-10281 (2019)
  77. Mitoribosome Biogenesis. Conor Moran J, Del'Olio S, Choi A, Zhong H, Barrientos A. Methods Mol Biol 2661 23-51 (2023)
  78. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Loguercio Polosa P, Capriglia F, Bruni F. Life (Basel) 13 1863 (2023)
  79. Purification of Mitochondrial Ribosomes with the Translocase Oxa1L from HEK Cells. Yang H, Desai N. Bio Protoc 11 e4110 (2021)
  80. Rapid Isolation of the Mitoribosome from HEK Cells. Aibara S, Andréll J, Singh V, Amunts A. J Vis Exp (2018)
  81. Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA. Lee M, Matsunaga N, Akabane S, Yasuda I, Ueda T, Takeuchi-Tomita N. Nucleic Acids Res 49 371-382 (2021)
  82. Structural Patching Fosters Divergence of Mitochondrial Ribosomes. Petrov AS, Wood EC, Bernier CR, Norris AM, Brown A, Amunts A. Mol. Biol. Evol. 36 207-219 (2019)
  83. Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain-containing 7A antigen. Stoddard SV, Welsh CL, Palopoli MM, Stoddard SD, Aramandla MP, Patel RM, Ma H, Beck LH. Proteins 87 136-145 (2019)