4c92 Citations

Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover.

Cell Rep 5 283-91 (2013)
Cited: 47 times
EuropePMC logo PMID: 24139796

Abstract

The decay of mRNAs is a key step in eukaryotic gene expression. The cytoplasmic Lsm1-7-Pat1 complex is a conserved component of the 5'-to-3' mRNA decay pathway, linking deadenylation to decapping. Lsm1-7 is similar to the nuclear Sm complexes that bind oligo-uridine tracts in snRNAs. The 2.3 Å resolution structure of S. cerevisiae Lsm1-7 shows the presence of a heptameric ring with Lsm1-2-3-6-5-7-4 topology. A distinct structural feature of the cytoplasmic Lsm ring is the C-terminal extension of Lsm1, which plugs the exit site of the central channel and approaches the RNA binding pockets. The 3.7 Å resolution structure of Lsm1-7 bound to the C-terminal domain of Pat1 reveals that Pat1 recognition is not mediated by the distinguishing cytoplasmic subunit, Lsm1, but by Lsm2 and Lsm3. These results show how the auxiliary domains and the canonical Sm folds of the Lsm1-7 complex are organized in order to mediate and modulate macromolecular interactions.

Reviews - 4c92 mentioned but not cited (2)

Articles - 4c92 mentioned but not cited (3)

  1. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. RNA 26 1400-1413 (2020)
  2. Architecture of the U6 snRNP reveals specific recognition of 3'-end processed U6 snRNA. Montemayor EJ, Didychuk AL, Yake AD, Sidhu GK, Brow DA, Butcher SE. Nat Commun 9 1749 (2018)
  3. Mutagenic Analysis of the C-Terminal Extension of Lsm1. Chowdhury A, Kalurupalle S, Tharun S. PLoS One 11 e0158876 (2016)


Reviews citing this publication (15)

  1. Cellular consequences of arginine methylation. Lorton BM, Shechter D. Cell Mol Life Sci 76 2933-2956 (2019)
  2. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Mugridge JS, Coller J, Gross JD. Nat Struct Mol Biol 25 1077-1085 (2018)
  3. The life of U6 small nuclear RNA, from cradle to grave. Didychuk AL, Butcher SE, Brow DA. RNA 24 437-460 (2018)
  4. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. Siwaszek A, Ukleja M, Dziembowski A. RNA Biol 11 1122-1136 (2014)
  5. mRNA decapping: finding the right structures. Charenton C, Graille M. Philos Trans R Soc Lond B Biol Sci 373 20180164 (2018)
  6. Degradation of oligouridylated histone mRNAs: see UUUUU and goodbye. Hoefig KP, Heissmeyer V. Wiley Interdiscip Rev RNA 5 577-589 (2014)
  7. The role of 3' end uridylation in RNA metabolism and cellular physiology. Zigáčková D, Vaňáčová Š. Philos Trans R Soc Lond B Biol Sci 373 20180171 (2018)
  8. Mille viae in eukaryotic mRNA decapping. Valkov E, Jonas S, Weichenrieder O. Curr Opin Struct Biol 47 40-51 (2017)
  9. Eukaryotic mRNA Decapping Activation. Vidya E, Duchaine TF. Front Genet 13 832547 (2022)
  10. RNA uridylation and decay in plants. de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. Philos Trans R Soc Lond B Biol Sci 373 20180163 (2018)
  11. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. Towler BP, Newbury SF. Wiley Interdiscip Rev RNA 9 e1499 (2018)
  12. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Front Plant Sci 10 167 (2019)
  13. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. He F, Jacobson A. FEBS J 290 5057-5085 (2023)
  14. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. FEBS Open Bio 13 957-974 (2023)
  15. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Zhao Q, Pavanello L, Bartlam M, Winkler GS. Front Genet 14 1233842 (2023)

Articles citing this publication (27)

  1. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Lim J, Ha M, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN. Cell 159 1365-1376 (2014)
  2. The translational landscape of the splicing factor SRSF1 and its role in mitosis. Maslon MM, Heras SR, Bellora N, Eyras E, Cáceres JF. Elife e02028 (2014)
  3. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. Xing W, Muhlrad D, Parker R, Rosen MK. Elife 9 e56525 (2020)
  4. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. He F, Jacobson A. RNA 21 1633-1647 (2015)
  5. General decapping activators target different subsets of inefficiently translated mRNAs. He F, Celik A, Wu C, Jacobson A. Elife 7 e34409 (2018)
  6. A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast. Charenton C, Gaudon-Plesse C, Fourati Z, Taverniti V, Back R, Kolesnikova O, Séraphin B, Graille M. Proc Natl Acad Sci U S A 114 E9493-E9501 (2017)
  7. Pat1 contributes to the RNA binding activity of the Lsm1-7-Pat1 complex. Chowdhury A, Kalurupalle S, Tharun S. RNA 20 1465-1475 (2014)
  8. Control of mRNA decapping by autoinhibition. Paquette DR, Tibble RW, Daifuku TS, Gross JD. Nucleic Acids Res 46 6318-6329 (2018)
  9. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. Jungfleisch J, Chowdhury A, Alves-Rodrigues I, Tharun S, Díez J. RNA 21 1469-1479 (2015)
  10. The S. pombe mRNA decapping complex recruits cofactors and an Edc1-like activator through a single dynamic surface. Wurm JP, Overbeck J, Sprangers R. RNA 22 1360-1372 (2016)
  11. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Cell Rep 20 1187-1200 (2017)
  12. The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. Garre E, Pelechano V, Sánchez Del Pino M, Alepuz P, Sunnerhagen P. PLoS Genet 14 e1007563 (2018)
  13. Letter Crystal structure and biochemical analysis of the heptameric Lsm1-7 complex. Zhou L, Zhou Y, Hang J, Wan R, Lu G, Yan C, Shi Y. Cell Res 24 497-500 (2014)
  14. Pat1 activates late steps in mRNA decay by multiple mechanisms. Lobel JH, Tibble RW, Gross JD. Proc Natl Acad Sci U S A 116 23512-23517 (2019)
  15. Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen. Miller D, Brandt N, Gresham D. PLoS Genet 14 e1007406 (2018)
  16. The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment. Fourati Z, Kolesnikova O, Back R, Keller J, Charenton C, Taverniti V, Plesse CG, Lazar N, Durand D, van Tilbeurgh H, Séraphin B, Graille M. PLoS One 9 e96828 (2014)
  17. The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors. Reimer KA, Stark MR, Aguilar LC, Stark SR, Burke RD, Moore J, Fahlman RP, Yip CK, Kuroiwa H, Oeffinger M, Rader SD. RNA 23 952-967 (2017)
  18. PABP prevents the untimely decay of select mRNA populations in human cells. Kajjo S, Sharma S, Chen S, Brothers WR, Cott M, Hasaj B, Jovanovic P, Larsson O, Fabian MR. EMBO J 41 e108650 (2022)
  19. Quantitative reconstitution of yeast RNA processing bodies. Currie SL, Xing W, Muhlrad D, Decker CJ, Parker R, Rosen MK. Proc Natl Acad Sci U S A 120 e2214064120 (2023)
  20. Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. Roth AJ, Shuman S, Schwer B. RNA 24 853-864 (2018)
  21. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. Muppavarapu M, Huch S, Nissan T. RNA Biol 13 455-465 (2016)
  22. Variants in LSM7 impair LSM complexes assembly, neurodevelopment in zebrafish and may be associated with an ultra-rare neurological disease. Derksen A, Shih HY, Forget D, Darbelli L, Tran LT, Poitras C, Guerrero K, Tharun S, Alkuraya FS, Kurdi WI, Nguyen CE, Laberge AM, Si Y, Gauthier MS, Bonkowsky JL, Coulombe B, Bernard G. HGG Adv 2 100034 (2021)
  23. Archaeal Lsm rings as stable self-assembling tectons for protein nanofabrication. Wason A, Pearce FG, Gerrard JA, Mabbutt BC. Biochem Biophys Res Commun 489 326-331 (2017)
  24. Establishment of 5'-3' interactions in mRNA independent of a continuous ribose-phosphate backbone. Kluge F, Götze M, Wahle E. RNA 26 613-628 (2020)
  25. Pby1 is a direct partner of the Dcp2 decapping enzyme. Charenton C, Gaudon-Plesse C, Back R, Ulryck N, Cosson L, Séraphin B, Graille M. Nucleic Acids Res 48 6353-6366 (2020)
  26. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Zhu J, Chen K, Sun YH, Ye W, Liu J, Zhang D, Su N, Wu L, Kou X, Zhao Y, Wang H, Gao S, Kang L. Nat Commun 14 957 (2023)
  27. The expression pattern of OsDim1 in rice and its proposed function. Doku HA, Gan SX, Zhu Q, Nadir S, Li W, Li MT, Zhou L, Li CY, Kang SG, Park EH, Chen LJ, Lee DS. Sci Rep 9 18492 (2019)