4abk Citations

Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains.

Abstract

ADP-ribosyltransferases (ARTs) catalyze the transfer of ADP-ribose from NAD(+) onto substrates. Some ARTs generate in an iterative process ADP-ribose polymers that serve as adaptors for distinct protein domains. Other ARTs, exemplified by ARTD10, function as mono-ADP-ribosyltransferases, but it has been unclear whether this modification occurs in cells and how it is read. We observed that ARTD10 colocalized with ARTD8 and defined its macrodomains 2 and 3 as readers of mono-ADP-ribosylation both in vitro and in cells. The crystal structures of these two ARTD8 macrodomains and isothermal titration calorimetry confirmed their interaction with ADP-ribose. These macrodomains recognized mono-ADP-ribosylated ARTD10, but not poly-ADP-ribosylated ARTD1. This distinguished them from the macrodomain of macroH2A1.1, which interacted with poly- but not mono-ADP-ribosylated substrates. Moreover, Ran, an ARTD10 substrate, was also read by ARTD8 macrodomains. This identifies readers of mono-ADP-ribosylated proteins, defines their structures, and demonstrates the presence of this modification in cells.

Reviews - 4abk mentioned but not cited (2)

  1. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Camicia R, Winkler HC, Hassa PO. Mol Cancer 14 207 (2015)
  2. Research Progress on PARP14 as a Drug Target. Qin W, Wu HJ, Cao LQ, Li HJ, He CX, Zhao D, Xing L, Li PQ, Jin X, Cao HL. Front Pharmacol 10 172 (2019)

Articles - 4abk mentioned but not cited (2)

  1. ADP-ribose and analogues bound to the deMARylating macrodomain from the bat coronavirus HKU4. Hammond RG, Schormann N, McPherson RL, Leung AKL, Deivanayagam CCS, Johnson MA. Proc Natl Acad Sci U S A 118 e2004500118 (2021)
  2. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. Torretta A, Chatzicharalampous C, Ebenwaldner C, Schüler H. J Biol Chem 299 105096 (2023)


Reviews citing this publication (23)

  1. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Barkauskaite E, Jankevicius G, Ahel I. Mol Cell 58 935-946 (2015)
  2. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Rack JG, Perina D, Ahel I. Annu Rev Biochem 85 431-454 (2016)
  3. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Feijs KL, Forst AH, Verheugd P, Lüscher B. Nat Rev Mol Cell Biol 14 443-451 (2013)
  4. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T, Krauss S, Lehtio L. Curr Pharm Des 20 6472-6488 (2014)
  5. New PARP targets for cancer therapy. Vyas S, Chang P. Nat Rev Cancer 14 502-509 (2014)
  6. The recognition and removal of cellular poly(ADP-ribose) signals. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. FEBS J 280 3491-3507 (2013)
  7. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Ryu KW, Kim DS, Kraus WL. Chem Rev 115 2453-2481 (2015)
  8. Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Bütepage M, Eckei L, Verheugd P, Lüscher B. Cells 4 569-595 (2015)
  9. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology. Feijs KL, Verheugd P, Lüscher B. FEBS J 280 3519-3529 (2013)
  10. ADP-ribosylation signalling and human disease. Palazzo L, Mikolčević P, Mikoč A, Ahel I. Open Biol 9 190041 (2019)
  11. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol Aspects Med 34 1088-1108 (2013)
  12. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  13. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Challa S, Stokes MS, Kraus WL. Cells 10 313 (2021)
  14. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol Mol Biol Rev 83 e00038-18 (2019)
  15. Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives. Poltronieri P, Celetti A, Palazzo L. Cells 10 128 (2021)
  16. ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Rosado MM, Pioli C. Immunology 164 15-30 (2021)
  17. Role of mono-ADP-ribosylation histone modification (Review). Zha JJ, Tang Y, Wang YL. Exp Ther Med 21 577 (2021)
  18. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Lüscher B, Verheirstraeten M, Krieg S, Korn P. Cell Mol Life Sci 79 288 (2022)
  19. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools. Dasovich M, Leung AKL. Mol Cell 83 1552-1572 (2023)
  20. Functional roles of ADP-ribosylation writers, readers and erasers. Li P, Lei Y, Qi J, Liu W, Yao K. Front Cell Dev Biol 10 941356 (2022)
  21. IFN-Induced PARPs-Sensors of Foreign Nucleic Acids? Biaesch K, Knapp S, Korn P. Pathogens 12 457 (2023)
  22. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Front Cell Dev Biol 10 864101 (2022)
  23. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. Bashyal A, Brodbelt JS. Mass Spectrom Rev e21811 (2022)

Articles citing this publication (45)

  1. Family-wide analysis of poly(ADP-ribose) polymerase activity. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. Nat Commun 5 4426 (2014)
  2. The Promise of Proteomics for the Study of ADP-Ribosylation. Daniels CM, Ong SE, Leung AK. Mol Cell 58 911-924 (2015)
  3. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. Daugherty MD, Young JM, Kerns JA, Malik HS. PLoS Genet 10 e1004403 (2014)
  4. Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, Lüscher B. Nat Commun 4 1683 (2013)
  5. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Eckei L, Krieg S, Bütepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kümmerer BM, Rossetti G, Lüscher B, Verheugd P. Sci Rep 7 41746 (2017)
  6. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance. Nicolae CM, Aho ER, Vlahos AH, Choe KN, De S, Karras GI, Moldovan GL. J Biol Chem 289 13627-13637 (2014)
  7. Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Gibson BA, Conrad LB, Huang D, Kraus WL. Biochemistry 56 6305-6316 (2017)
  8. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. Mol Cancer 13 125 (2014)
  9. Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I. Open Biol 10 200237 (2020)
  10. A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nicolae CM, Aho ER, Choe KN, Constantin D, Hu HJ, Lee D, Myung K, Moldovan GL. Nucleic Acids Res 43 3143-3153 (2015)
  11. ELTA: Enzymatic Labeling of Terminal ADP-Ribose. Ando Y, Elkayam E, McPherson RL, Dasovich M, Cheng SJ, Voorneveld J, Filippov DV, Ong SE, Joshua-Tor L, Leung AKL. Mol Cell 73 845-856.e5 (2019)
  12. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. Vivelo CA, Leung AK. Proteomics 15 203-217 (2015)
  13. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. Elife 5 e21475 (2016)
  14. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Fabrizio G, Di Paola S, Stilla A, Giannotta M, Ruggiero C, Menzel S, Koch-Nolte F, Sallese M, Di Girolamo M. Cell Mol Life Sci 72 1209-1225 (2015)
  15. PARP10 (ARTD10) modulates mitochondrial function. Márton J, Fodor T, Nagy L, Vida A, Kis G, Brunyánszki A, Antal M, Lüscher B, Bai P. PLoS One 13 e0187789 (2018)
  16. PARP10 suppresses tumor metastasis through regulation of Aurora A activity. Zhao Y, Hu X, Wei L, Song D, Wang J, You L, Saiyin H, Li Z, Yu W, Yu L, Ding J, Wu J. Oncogene 37 2921-2935 (2018)
  17. Activity-based assay for human mono-ADP-ribosyltransferases ARTD7/PARP15 and ARTD10/PARP10 aimed at screening and profiling inhibitors. Venkannagari H, Fallarero A, Feijs KL, Lüscher B, Lehtiö L. Eur J Pharm Sci 49 148-156 (2013)
  18. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Bütepage M, Preisinger C, von Kriegsheim A, Scheufen A, Lausberg E, Li J, Kappes F, Feederle R, Ernst S, Eckei L, Krieg S, Müller-Newen G, Rossetti G, Feijs KLH, Verheugd P, Lüscher B. Sci Rep 8 6748 (2018)
  19. Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. Schuller M, Riedel K, Gibbs-Seymour I, Uth K, Sieg C, Gehring AP, Ahel I, Bracher F, Kessler BM, Elkins JM, Knapp S. ACS Chem Biol 12 2866-2874 (2017)
  20. PARP12 (ARTD12) suppresses hepatocellular carcinoma metastasis through interacting with FHL2 and regulating its stability. Shao C, Qiu Y, Liu J, Feng H, Shen S, Saiyin H, Yu W, Wei Y, Yu L, Su W, Wu J. Cell Death Dis 9 856 (2018)
  21. Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome. Žaja R, Aydin G, Lippok BE, Feederle R, Lüscher B, Feijs KLH. Sci Rep 10 8286 (2020)
  22. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2. Moustakim M, Riedel K, Schuller M, Gehring AP, Monteiro OP, Martin SP, Fedorov O, Heer J, Dixon DJ, Elkins JM, Knapp S, Bracher F, Brennan PE. Bioorg Med Chem 26 2965-2972 (2018)
  23. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. O'Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. Mol Syst Biol 17 e10079 (2021)
  24. Identification of Poly(ADP-Ribose) Polymerase Macrodomain Inhibitors Using an AlphaScreen Protocol. Ekblad T, Verheugd P, Lindgren AE, Nyman T, Elofsson M, Schüler H. SLAS Discov 23 353-362 (2018)
  25. PARP14: A key ADP-ribosylating protein in host-virus interactions? Parthasarathy S, Fehr AR. PLoS Pathog 18 e1010535 (2022)
  26. Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism. Gossmann TI, Ziegler M. DNA Repair (Amst) 23 39-48 (2014)
  27. Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim IK, Du KP, Abbas T, Sherman NE, Wotton D, Paschal BM. Nat Commun 12 2705 (2021)
  28. Deciphering the Nucleotide and RNA Binding Selectivity of the Mayaro Virus Macro Domain. Tsika AC, Melekis E, Tsatsouli SA, Papageorgiou N, Maté MJ, Canard B, Coutard B, Bentrop D, Spyroulias GA. J Mol Biol 431 2283-2297 (2019)
  29. Letter RNF114 suppresses metastasis through regulation of PARP10 in cervical cancer cells. Zhao Y, Liang X, Wei L, Liu Y, Liu J, Feng H, Zheng F, Wang Y, Ma H, Wu J. Cancer Commun (Lond) 41 187-191 (2021)
  30. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Li P, Zhen Y, Yu Y. Methods Enzymol 626 301-321 (2019)
  31. Structure of the sirtuin-linked macrodomain SAV0325 from Staphylococcus aureus. Appel CD, Feld GK, Wallace BD, Williams RS. Protein Sci 25 1682-1691 (2016)
  32. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology. Haikarainen T, Maksimainen MM, Obaji E, Lehtiö L. SLAS Discov 23 255-263 (2018)
  33. Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability. Dhoonmoon A, Nicolae CM. NAR Cancer 5 zcad009 (2023)
  34. The macro domain as fusion tag for carrier-driven crystallization. Wild R, Hothorn M. Protein Sci 26 365-374 (2017)
  35. Development and characterization of new tools for detecting poly(ADP-ribose) in vitro and in vivo. Challa S, Ryu KW, Whitaker AL, Abshier JC, Camacho CV, Kraus WL. Elife 11 e72464 (2022)
  36. Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication. Krieg S, Pott F, Potthoff L, Verheirstraeten M, Bütepage M, Golzmann A, Lippok B, Goffinet C, Lüscher B, Korn P. Cell Mol Life Sci 80 72 (2023)
  37. Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used. Weixler L, Ikenga NJ, Voorneveld J, Aydin G, Bolte TM, Momoh J, Bütepage M, Golzmann A, Lüscher B, Filippov DV, Žaja R, Feijs KL. Life Sci Alliance 6 e202201455 (2023)
  38. A macrodomain-linked immunosorbent assay (MLISA) for mono-ADP-ribosyltransferases. Chen J, Lam AT, Zhang Y. Anal Biochem 543 132-139 (2018)
  39. Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins. Delgado-Rodriguez SE, Ryan AP, Daugherty MD. Pathogens 12 674 (2023)
  40. Selective Pharmaceutical Inhibition of PARP14 Mitigates Allergen-Induced IgE and Mucus Overproduction in a Mouse Model of Pulmonary Allergic Response. Eddie AM, Chen KW, Schenkel LB, Swinger KK, Molina JR, Kunii K, Raybuck AL, Keilhack H, Gibson-Corley KN, Niepel M, Peebles RS, Boothby MR, Cho SH. Immunohorizons 6 432-446 (2022)
  41. Switch-like compaction of poly(ADP-ribose) upon cation binding. Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Proc Natl Acad Sci U S A 120 e2215068120 (2023)
  42. PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O, Rack JGM, Baretić D, Crudgington DRK, Groslambert J, Fowler G, Wijngaarden S, Prokhorova E, Rehwinkel J, Schüler H, Filippov DV, Sanyal S, Ahel D, Nielsen ML, Smith R, Ahel I. Sci Adv 9 eadi2687 (2023)
  43. Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Kubori T, Lee J, Kim H, Yamazaki K, Nishikawa M, Kitao T, Oh BH, Nagai H. Proc Natl Acad Sci U S A 119 e2122872119 (2022)
  44. [1,2,4]Triazolo[3,4-b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes. Murthy S, Nizi MG, Maksimainen MM, Massari S, Alaviuhkola J, Lippok BE, Vagaggini C, Sowa ST, Galera-Prat A, Ashok Y, Venkannagari H, Prunskaite-Hyyryläinen R, Dreassi E, Lüscher B, Korn P, Tabarrini O, Lehtiö L. J Med Chem 66 1301-1320 (2023)
  45. ADPr-ChAP: Mapping ADP-Ribosylation onto the Genome. McPherson RL, Leung AKL. Mol Cell 61 327-328 (2016)