4a3c Citations

Structural basis of initial RNA polymerase II transcription.

EMBO J 30 4755-63 (2011)
Related entries: 4a3b, 4a3d, 4a3e, 4a3f, 4a3g, 4a3i, 4a3j, 4a3k, 4a3l, 4a3m

Cited: 66 times
EuropePMC logo PMID: 22056778

Abstract

During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.

Reviews - 4a3c mentioned but not cited (1)

Articles - 4a3c mentioned but not cited (2)

  1. Structural basis of initial RNA polymerase II transcription. Cheung AC, Sainsbury S, Cramer P. EMBO J 30 4755-4763 (2011)
  2. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents. Papageorgiou L, Megalooikonomou V, Vlachakis D. PeerJ 5 e3061 (2017)


Reviews citing this publication (16)

  1. Looping back to leap forward: transcription enters a new era. Levine M, Cattoglio C, Tjian R. Cell 157 13-25 (2014)
  2. Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases. Decker KB, Hinton DM. Annu. Rev. Microbiol. 67 113-139 (2013)
  3. Structural basis of transcription elongation. Martinez-Rucobo FW, Cramer P. Biochim. Biophys. Acta 1829 9-19 (2013)
  4. Basic mechanism of transcription by RNA polymerase II. Svetlov V, Nudler E. Biochim. Biophys. Acta 1829 20-28 (2013)
  5. DNA topoisomerases beyond the standard role. Baranello L, Kouzine F, Levens D. Transcription 4 232-237 (2013)
  6. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. DNA Repair (Amst.) 19 71-83 (2014)
  7. Promoter clearance by RNA polymerase II. Luse DS. Biochim. Biophys. Acta 1829 63-68 (2013)
  8. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. Crit. Rev. Biochem. Mol. Biol. 50 503-519 (2015)
  9. Computational simulation strategies for analysis of multisubunit RNA polymerases. Wang B, Feig M, Cukier RI, Burton ZF. Chem. Rev. 113 8546-8566 (2013)
  10. Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review. Knutson BA, McNamar R, Rothblum LI. Biochem Soc Trans 48 1917-1927 (2020)
  11. The importance of dynamics in integrative modeling of supramolecular assemblies. Tamò GE, Abriata LA, Dal Peraro M. Curr. Opin. Struct. Biol. 31 28-34 (2015)
  12. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Hantsche M, Cramer P. Angew. Chem. Int. Ed. Engl. 55 15972-15981 (2016)
  13. Archaeal transcription: making up for lost time. Wojtas MN, Abrescia NG. Biochem. Soc. Trans. 41 356-361 (2013)
  14. Mechanisms of Transcriptional Pausing in Bacteria. Kang JY, Mishanina TV, Landick R, Darst SA. J. Mol. Biol. 431 4007-4029 (2019)
  15. Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Mirzakhanyan Y, Gershon PD. Microbiol. Mol. Biol. Rev. 81 (2017)
  16. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. Belogurov GA, Artsimovitch I. J. Mol. Biol. 431 3975-4006 (2019)

Articles citing this publication (47)

  1. Structural basis of transcription initiation. Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH. Science 338 1076-1080 (2012)
  2. Architecture of the RNA polymerase II-Mediator core initiation complex. Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko EV, Borchers CH, Baumeister W, Herzog F, Villa E, Cramer P. Nature 518 376-380 (2015)
  3. Transcription-dependent dynamic supercoiling is a short-range genomic force. Kouzine F, Gupta A, Baranello L, Wojtowicz D, Ben-Aissa K, Liu J, Przytycka TM, Levens D. Nat. Struct. Mol. Biol. 20 396-403 (2013)
  4. Near-atomic resolution visualization of human transcription promoter opening. He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Nature 533 359-365 (2016)
  5. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Sainsbury S, Niesser J, Cramer P. Nature 493 437-440 (2013)
  6. RNA polymerase I structure and transcription regulation. Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P. Nature 502 650-655 (2013)
  7. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D, Fernández-Tornero C, Kulbachinskiy A, Murakami KS. J. Biol. Chem. 289 24549-24559 (2014)
  8. A movie of RNA polymerase II transcription. Cheung AC, Cramer P. Cell 149 1431-1437 (2012)
  9. Millisecond dynamics of RNA polymerase II translocation at atomic resolution. Silva DA, Weiss DR, Pardo Avila F, Da LT, Levitt M, Wang D, Huang X. Proc. Natl. Acad. Sci. U.S.A. 111 7665-7670 (2014)
  10. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. Kaplan CD, Jin H, Zhang IL, Belyanin A. PLoS Genet. 8 e1002627 (2012)
  11. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. Dangkulwanich M, Ishibashi T, Liu S, Kireeva ML, Lubkowska L, Kashlev M, Bustamante CJ. Elife 2 e00971 (2013)
  12. Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Barnes CO, Calero M, Malik I, Graham BW, Spahr H, Lin G, Cohen AE, Brown IS, Zhang Q, Pullara F, Trakselis MA, Kaplan CD, Calero G. Mol. Cell 59 258-269 (2015)
  13. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Fishburn J, Tomko E, Galburt E, Hahn S. Proc. Natl. Acad. Sci. U.S.A. 112 3961-3966 (2015)
  14. Dynamic architecture of a minimal RNA polymerase II open promoter complex. Treutlein B, Muschielok A, Andrecka J, Jawhari A, Buchen C, Kostrewa D, Hög F, Cramer P, Michaelis J. Mol. Cell 46 136-146 (2012)
  15. RNA polymerase III subunit architecture and implications for open promoter complex formation. Wu CC, Herzog F, Jennebach S, Lin YC, Pai CY, Aebersold R, Cramer P, Chen HT. Proc. Natl. Acad. Sci. U.S.A. 109 19232-19237 (2012)
  16. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. Kireeva ML, Opron K, Seibold SA, Domecq C, Cukier RI, Coulombe B, Kashlev M, Burton ZF. BMC Biophys 5 11 (2012)
  17. Molecular Structures of Transcribing RNA Polymerase I. Tafur L, Sadian Y, Hoffmann NA, Jakobi AJ, Wetzel R, Hagen WJH, Sachse C, Müller CW. Mol. Cell 64 1135-1143 (2016)
  18. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Liu B, Zuo Y, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 113 4051-4056 (2016)
  19. The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Fouqueau T, Zeller ME, Cheung AC, Cramer P, Thomm M. Nucleic Acids Res. 41 7048-7059 (2013)
  20. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nagy J, Grohmann D, Cheung AC, Schulz S, Smollett K, Werner F, Michaelis J. Nat Commun 6 6161 (2015)
  21. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions. Oh J, Fleming AM, Xu J, Chong J, Burrows CJ, Wang D. Proc Natl Acad Sci U S A 117 9338-9348 (2020)
  22. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Wang B, Predeus AV, Burton ZF, Feig M. Biophys. J. 105 767-775 (2013)
  23. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol. Cell 69 802-815.e5 (2018)
  24. Structural insights into transcription initiation by yeast RNA polymerase I. Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R, Buczak K, Hagen WJ, Beck M, Sachse C, Müller CW. EMBO J. 36 2698-2709 (2017)
  25. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Mejia YX, Nudler E, Bustamante C. Proc. Natl. Acad. Sci. U.S.A. 112 743-748 (2015)
  26. Structure of paused transcription complex Pol II-DSIF-NELF. Vos SM, Farnung L, Urlaub H, Cramer P. Nature 560 601-606 (2018)
  27. Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Wojtas MN, Mogni M, Millet O, Bell SD, Abrescia NG. Nucleic Acids Res. 40 9941-9952 (2012)
  28. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Nucleic Acids Res. 42 12707-12721 (2014)
  29. High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. Qiu C, Erinne OC, Dave JM, Cui P, Jin H, Muthukrishnan N, Tang LK, Babu SG, Lam KC, Vandeventer PJ, Strohner R, Van den Brulle J, Sze SH, Kaplan CD. PLoS Genet. 12 e1006321 (2016)
  30. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex. Zhang W, Tam CP, Walton T, Fahrenbach AC, Birrane G, Szostak JW. Proc. Natl. Acad. Sci. U.S.A. 114 7659-7664 (2017)
  31. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm. Powell HR, Battye TGG, Kontogiannis L, Johnson O, Leslie AGW. Nat Protoc 12 1310-1325 (2017)
  32. Translocation and fidelity of Escherichia coli RNA polymerase. Nedialkov YA, Burton ZF. Transcription 4 136-143 (2013)
  33. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. Ahn JH, Rechsteiner A, Strome S, Kelly WG. PLoS Genet. 12 e1006227 (2016)
  34. Structures of Bacterial RNA Polymerase Complexes Reveal the Mechanism of DNA Loading and Transcription Initiation. Glyde R, Ye F, Jovanovic M, Kotta-Loizou I, Buck M, Zhang X. Mol. Cell 70 1111-1120.e3 (2018)
  35. Structural basis of RNA polymerase I stalling at UV light-induced DNA damage. Sanz-Murillo M, Xu J, Belogurov GA, Calvo O, Gil-Carton D, Moreno-Morcillo M, Wang D, Fernández-Tornero C. Proc. Natl. Acad. Sci. U.S.A. 115 8972-8977 (2018)
  36. Structure of the human RNA polymerase I elongation complex. Zhao D, Liu W, Chen K, Wu Z, Yang H, Xu Y. Cell Discov 7 97 (2021)
  37. De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Haijes HA, Koster MJE, Rehmann H, Li D, Hakonarson H, Cappuccio G, Hancarova M, Lehalle D, Reardon W, Schaefer GB, Lehman A, van de Laar IMBH, Tesselaar CD, Turner C, Goldenberg A, Patrier S, Thevenon J, Pinelli M, Brunetti-Pierri N, Prchalová D, Havlovicová M, Vlckova M, Sedláček Z, Lopez E, Ragoussis V, Pagnamenta AT, Kini U, Vos HR, van Es RM, van Schaik RFMA, van Essen TAJ, Kibaek M, Taylor JC, Sullivan J, Shashi V, Petrovski S, Fagerberg C, Martin DM, van Gassen KLI, Pfundt R, Falk MJ, McCormick EM, Timmers HTM, van Hasselt PM. Am J Hum Genet 105 283-301 (2019)
  38. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. Cramer P. J. Mol. Biol. 429 2603-2610 (2017)
  39. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. Tafur L, Sadian Y, Hanske J, Wetzel R, Weis F, Müller CW. Elife 8 (2019)
  40. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. PLoS Comput Biol 19 e1010999 (2023)
  41. Identification of a Small Interface between the Methyltransferase and RNA Polymerase of NS5 that is Essential for Zika Virus Replication. Rusanov T, Kent T, Saeed M, Hoang TM, Thomas C, Rice CM, Pomerantz RT. Sci Rep 8 17384 (2018)
  42. RNA matchmaking in chromatin regulation. Wu SK, Roberts JT, Balas MM, Johnson AM. Biochem Soc Trans 48 2467-2481 (2020)
  43. RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3' end dynamics during transcription termination. Mishra S, Maraia RJ. Nucleic Acids Res. 47 310-327 (2019)
  44. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. Brodolin K, Morichaud Z. J Biol Chem 296 100253 (2021)
  45. Structures illustrate step-by-step mitochondrial transcription initiation. Goovaerts Q, Shen J, De Wijngaert B, Basu U, Patel SS, Das K. Nature 622 872-879 (2023)
  46. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Mäkinen JJ, Shin Y, Vieras E, Virta P, Metsä-Ketelä M, Murakami KS, Belogurov GA. Nat Commun 12 796 (2021)
  47. Transcription preinitiation complex structure and dynamics provide insight into genetic diseases. Yan C, Dodd T, He Y, Tainer JA, Tsutakawa SE, Ivanov I. Nat. Struct. Mol. Biol. 26 397-406 (2019)