3v6s Citations

Discovery of potent and selective covalent inhibitors of JNK.

Abstract

The mitogen-activated kinases JNK1/2/3 are key enzymes in signaling modules that transduce and integrate extracellular stimuli into coordinated cellular response. Here, we report the discovery of irreversible inhibitors of JNK1/2/3. We describe two JNK3 cocrystal structures at 2.60 and 2.97 Å resolution that show the compounds form covalent bonds with a conserved cysteine residue. JNK-IN-8 is a selective JNK inhibitor that inhibits phosphorylation of c-Jun, a direct substrate of JNK, in cells exposed to submicromolar drug in a manner that depends on covalent modification of the conserved cysteine residue. Extensive biochemical, cellular, and pathway-based profiling establish the selectivity of JNK-IN-8 for JNK and suggests that the compound will be broadly useful as a pharmacological probe of JNK-dependent signal transduction. Potential lead compounds have also been identified for kinases, including IRAK1, PIK3C3, PIP4K2C, and PIP5K3.

Reviews - 3v6s mentioned but not cited (3)

  1. Developing irreversible inhibitors of the protein kinase cysteinome. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. Chem. Biol. 20 146-159 (2013)
  2. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? Zhao Z, Wu H, Wang L, Liu Y, Knapp S, Liu Q, Gray NS. ACS Chem. Biol. 9 1230-1241 (2014)
  3. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Li J, Wang X, Ding J, Zhu Y, Min W, Kuang W, Yuan K, Sun C, Yang P. Acta Pharm Sin B 12 2808-2831 (2022)

Articles - 3v6s mentioned but not cited (7)

  1. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. Ullah R, Jo MH, Riaz M, Alam SI, Saeed K, Ali W, Rehman IU, Ikram M, Kim MO. J Neuroinflammation 17 303 (2020)
  2. Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity. Ferguson FM, Doctor ZM, Ficarro SB, Browne CM, Marto JA, Johnson JL, Yaron TM, Cantley LC, Kim ND, Sim T, Berberich MJ, Kalocsay M, Sorger PK, Gray NS. Cell Chem Biol 26 804-817.e12 (2019)
  3. Network pharmacology-based identifcation of potential targets of the flower of Trollius chinensis Bunge acting on anti-inflammatory effectss. Liang JW, Wang MY, Olounfeh KM, Zhao N, Wang S, Meng FH. Sci Rep 9 8109 (2019)
  4. Friedelin Attenuates Neuronal Dysfunction and Memory Impairment by Inhibition of the Activated JNK/NF-κB Signalling Pathway in Scopolamine-Induced Mice Model of Neurodegeneration. Sandhu M, Irfan HM, Shah SA, Ahmed M, Naz I, Akram M, Fatima H, Farooq AS. Molecules 27 4513 (2022)
  5. Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads. Sailapathi A, Murugan G, Somarathinam K, Gunalan S, Jagadeesan R, Yoosuf N, Kanagaraj S, Kothandan G. ACS Omega 5 3969-3978 (2020)
  6. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)
  7. Synthesis and structure activity relationships of a series of 4-amino-1H-pyrazoles as covalent inhibitors of CDK14. Ferguson FM, Doctor ZM, Ficarro SB, Marto JA, Kim ND, Sim T, Gray NS. Bioorg. Med. Chem. Lett. 29 1985-1993 (2019)


Reviews citing this publication (33)

  1. Mitogen-activated protein kinases in innate immunity. Arthur JS, Ley SC. Nat. Rev. Immunol. 13 679-692 (2013)
  2. JNK signalling in cancer: in need of new, smarter therapeutic targets. Bubici C, Papa S. Br. J. Pharmacol. 171 24-37 (2014)
  3. Redox regulation of protein kinases. Truong TH, Carroll KS. Crit. Rev. Biochem. Mol. Biol. 48 332-356 (2013)
  4. The 2 Faces of JNK Signaling in Cancer. Tournier C. Genes Cancer 4 397-400 (2013)
  5. Targeted Covalent Inhibitors for Drug Design. Baillie TA. Angew. Chem. Int. Ed. Engl. 55 13408-13421 (2016)
  6. PI3K-AKT-mTOR-signaling and beyond: the complex network in gastroenteropancreatic neuroendocrine neoplasms. Briest F, Grabowski P. Theranostics 4 336-365 (2014)
  7. IRAK signalling in cancer. Rhyasen GW, Starczynowski DT. Br. J. Cancer 112 232-237 (2015)
  8. The design of covalent allosteric drugs. Nussinov R, Tsai CJ. Annu. Rev. Pharmacol. Toxicol. 55 249-267 (2015)
  9. Covalent inhibitors design and discovery. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Eur J Med Chem 138 96-114 (2017)
  10. The RAF-MEK-ERK pathway: targeting ERK to overcome obstacles to effective cancer therapy. Yu Z, Ye S, Hu G, Lv M, Tu Z, Zhou K, Li Q. Future Med Chem 7 269-289 (2015)
  11. Role of C-Jun N-terminal Kinase in Hepatocellular Carcinoma Development. Wang J, Tai G. Target Oncol 11 723-738 (2016)
  12. New drug design with covalent modifiers. Adeniyi AA, Muthusamy R, Soliman ME. Expert Opin Drug Discov 11 79-90 (2016)
  13. How chemistry supports cell biology: the chemical toolbox at your service. Wijdeven RH, Neefjes J, Ovaa H. Trends Cell Biol. 24 751-760 (2014)
  14. Pseudokinases: update on their functions and evaluation as new drug targets. Byrne DP, Foulkes DM, Eyers PA. Future Med Chem 9 245-265 (2017)
  15. c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer's Diseases. Hepp Rehfeldt SC, Majolo F, Goettert MI, Laufer S. Int J Mol Sci 21 E9677 (2020)
  16. Covalent inhibitors: an opportunity for rational target selectivity. Lagoutte R, Patouret R, Winssinger N. Curr Opin Chem Biol 39 54-63 (2017)
  17. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. You KS, Yi YW, Cho J, Park JS, Seong YS. Pharmaceuticals (Basel) 14 589 (2021)
  18. The Cysteinome of Protein Kinases as a Target in Drug Development. Chaikuad A, Koch P, Laufer SA, Knapp S. Angew. Chem. Int. Ed. Engl. 57 4372-4385 (2018)
  19. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. J Med Chem 62 6512-6524 (2019)
  20. JNK signaling as a target for anticancer therapy. Abdelrahman KS, Hassan HA, Abdel-Aziz SA, Marzouk AA, Narumi A, Konno H, Abdel-Aziz M. Pharmacol Rep 73 405-434 (2021)
  21. Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Kumar S, Principe DR, Singh SK, Viswakarma N, Sondarva G, Rana B, Rana A. Pharmaceuticals (Basel) 13 (2020)
  22. Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Shen Y, Chen TJ, Lacorazza HD. Exp. Hematol. 53 16-25 (2017)
  23. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. Wells CI, Kapadia NR, Couñago RM, Drewry DH. Medchemcomm 9 44-66 (2018)
  24. Brain JNK and metabolic disease. Nogueiras R, Sabio G. Diabetologia 64 265-274 (2021)
  25. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Duong MTH, Lee JH, Ahn HC. Comput Struct Biotechnol J 18 1440-1457 (2020)
  26. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Guan G, Cannon RD, Coates DE, Mei L. Genes (Basel) 14 272 (2023)
  27. Functional Roles of JNK and p38 MAPK Signaling in Nasopharyngeal Carcinoma. Pua LJW, Mai CW, Chung FF, Khoo AS, Leong CO, Lim WM, Hii LW. Int J Mol Sci 23 1108 (2022)
  28. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. Int J Mol Sci 21 (2020)
  29. Mechanism and Therapeutic Targets of c-Jun-N-Terminal Kinases Activation in Nonalcoholic Fatty Liver Disease. Min RWM, Aung FWM, Liu B, Arya A, Win S. Biomedicines 10 2035 (2022)
  30. In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Bozhilov YK, Hsu I, Brown EJ, Wilkinson AC. Cells 12 896 (2023)
  31. Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Pemberton JM, Pogmore JP, Andrews DW. Cell Death Differ 28 108-122 (2021)
  32. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. J Enzyme Inhib Med Chem 35 574-583 (2020)
  33. Stress-activated kinases as therapeutic targets in pancreatic cancer. Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. World J Gastroenterol 27 4963-4984 (2021)

Articles citing this publication (146)

  1. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME, Carrasco M, Hunter J, Kim ND, Xie T, Sim T, Jänne PA, Meyerson M, Marto JA, Engen JR, Gray NS. Angew. Chem. Int. Ed. Engl. 53 199-204 (2014)
  2. A public-private partnership to unlock the untargeted kinome. Knapp S, Arruda P, Blagg J, Burley S, Drewry DH, Edwards A, Fabbro D, Gillespie P, Gray NS, Kuster B, Lackey KE, Mazzafera P, Tomkinson NC, Willson TM, Workman P, Zuercher WJ. Nat. Chem. Biol. 9 3-6 (2013)
  3. Tead and AP1 Coordinate Transcription and Motility. Liu X, Li H, Rajurkar M, Li Q, Cotton JL, Ou J, Zhu LJ, Goel HL, Mercurio AM, Park JS, Davis RJ, Mao J. Cell Rep 14 1169-1180 (2016)
  4. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Vernia S, Cavanagh-Kyros J, Garcia-Haro L, Sabio G, Barrett T, Jung DY, Kim JK, Xu J, Shulha HP, Garber M, Gao G, Davis RJ. Cell Metab. 20 512-525 (2014)
  5. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM, Manz T, Hao M, Bartkowiak B, Greenleaf AL, Marto JA, Geyer M, Bullock AN, Young RA, Gray NS. Nat. Chem. Biol. 12 876-884 (2016)
  6. Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells. Basu S, Rajakaruna S, Reyes B, Van Bockstaele E, Menko AS. Autophagy 10 1193-1211 (2014)
  7. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, Martin S, Youle RJ, Inglese J. ACS Chem Biol 10 1188-1197 (2015)
  8. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, Chong Z, Appadurai V, Dogruluk A, Eterovic AK, Bonnen PE, Creighton CJ, Chen K, Mills GB, Scott KL. Cancer Res. 75 5341-5354 (2015)
  9. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Lalaoui N, Hänggi K, Brumatti G, Chau D, Nguyen NY, Vasilikos L, Spilgies LM, Heckmann DA, Ma C, Ghisi M, Salmon JM, Matthews GM, de Valle E, Moujalled DM, Menon MB, Spall SK, Glaser SP, Richmond J, Lock RB, Condon SM, Gugasyan R, Gaestel M, Guthridge M, Johnstone RW, Munoz L, Wei A, Ekert PG, Vaux DL, Wong WW, Silke J. Cancer Cell 29 145-158 (2016)
  10. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J. Cancer Res. 74 2444-2454 (2014)
  11. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Fallahi-Sichani M, Moerke NJ, Niepel M, Zhang T, Gray NS, Sorger PK. Mol. Syst. Biol. 11 797 (2015)
  12. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, Alpi AF. Cancer Res. 74 2246-2257 (2014)
  13. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Martinez NM, Agosto L, Qiu J, Mallory MJ, Gazzara MR, Barash Y, Fu XD, Lynch KW. Genes Dev. 29 2054-2066 (2015)
  14. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. Jackson PA, Widen JC, Harki DA, Brummond KM. J. Med. Chem. 60 839-885 (2017)
  15. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Su KH, Cao J, Tang Z, Dai S, He Y, Sampson SB, Benjamin IJ, Dai C. Nat. Cell Biol. 18 527-539 (2016)
  16. Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Qu K, Zaba LC, Satpathy AT, Giresi PG, Li R, Jin Y, Armstrong R, Jin C, Schmitt N, Rahbar Z, Ueno H, Greenleaf WJ, Kim YH, Chang HY. Cancer Cell 32 27-41.e4 (2017)
  17. Development of Selective Covalent Janus Kinase 3 Inhibitors. Tan L, Akahane K, McNally R, Reyskens KM, Ficarro SB, Liu S, Herter-Sprie GS, Koyama S, Pattison MJ, Labella K, Johannessen L, Akbay EA, Wong KK, Frank DA, Marto JA, Look TA, Arthur JS, Eck MJ, Gray NS. J. Med. Chem. 58 6589-6606 (2015)
  18. Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J, Geng J, Herhaus L, Zhang J, Pauls E, Ham Y, Choi HG, Xie T, Deng X, Buhrlage SJ, Sim T, Cohen P, Sapkota G, Westover KD, Gray NS. J. Med. Chem. 58 183-196 (2015)
  19. JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: connecting fibrosis, inflammation, and stemness for cancer prevention. Lisanti MP, Tsirigos A, Pavlides S, Reeves KJ, Peiris-Pagès M, Chadwick AL, Sanchez-Alvarez R, Lamb R, Howell A, Martinez-Outschoorn UE, Sotgia F. Cell Cycle 13 580-599 (2014)
  20. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A. Cell Death Differ 28 1669-1687 (2021)
  21. Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation. Jones DS, Jenney AP, Swantek JL, Burke JM, Lauffenburger DA, Sorger PK. Nat. Chem. Biol. 13 38-45 (2017)
  22. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Brinkman CC, Iwami D, Hritzo MK, Xiong Y, Ahmad S, Simon T, Hippen KL, Blazar BR, Bromberg JS. Nat Commun 7 12021 (2016)
  23. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases. Dayalan Naidu S, Sutherland C, Zhang Y, Risco A, de la Vega L, Caunt CJ, Hastie CJ, Lamont DJ, Torrente L, Chowdhry S, Benjamin IJ, Keyse SM, Cuenda A, Dinkova-Kostova AT. Mol. Cell. Biol. 36 2403-2417 (2016)
  24. Regulation of axon growth by the JIP1-AKT axis. Dajas-Bailador F, Bantounas I, Jones EV, Whitmarsh AJ. J. Cell. Sci. 127 230-239 (2014)
  25. AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Yao CD, Haensel D, Gaddam S, Patel T, Atwood SX, Sarin KY, Whitson RJ, McKellar S, Shankar G, Aasi S, Rieger K, Oro AE. Nat Commun 11 5079 (2020)
  26. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. Shaikh LH, Zhou J, Teo AE, Garg S, Neogi SG, Figg N, Yeo GS, Yu H, Maguire JJ, Zhao W, Bennett MR, Azizan EA, Davenport AP, McKenzie G, Brown MJ. J. Clin. Endocrinol. Metab. 100 E836-44 (2015)
  27. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity. Kaltenmeier CT, Vollmer LL, Vernetti LA, Caprio L, Davis K, Korotchenko VN, Day BW, Tsang M, Hulkower KI, Lotze MT, Vogt A. J. Pharmacol. Exp. Ther. 361 39-50 (2017)
  28. Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3. Kung A, Chen YC, Schimpl M, Ni F, Zhu J, Turner M, Molina H, Overman R, Zhang C. J Am Chem Soc 138 10554-10560 (2016)
  29. Drug resistance in cancer: molecular evolution and compensatory proliferation. Friedman R. Oncotarget 7 11746-11755 (2016)
  30. Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes. Villamor JG, Kaschani F, Colby T, Oeljeklaus J, Zhao D, Kaiser M, Patricelli MP, van der Hoorn RA. Mol. Cell Proteomics 12 2481-2496 (2013)
  31. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. Hu X, Binns D, Reese ML. J. Biol. Chem. 292 11009-11020 (2017)
  32. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Titz B, Lomova A, Le A, Hugo W, Kong X, Ten Hoeve J, Friedman M, Shi H, Moriceau G, Song C, Hong A, Atefi M, Li R, Komisopoulou E, Ribas A, Lo RS, Graeber TG. Cell Discov 2 16028 (2016)
  33. Reversible covalent inhibition of eEF-2K by carbonitriles. Devkota AK, Edupuganti R, Yan C, Shi Y, Jose J, Wang Q, Kaoud TS, Cho EJ, Ren P, Dalby KN. Chembiochem 15 2435-2442 (2014)
  34. The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Vollmer S, Strickson S, Zhang T, Gray N, Lee KL, Rao VR, Cohen P. Biochem. J. 474 2027-2038 (2017)
  35. c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Xie X, Kaoud TS, Edupuganti R, Zhang T, Kogawa T, Zhao Y, Chauhan GB, Giannoukos DN, Qi Y, Tripathy D, Wang J, Gray NS, Dalby KN, Bartholomeusz C, Ueno NT. Oncogene 36 2599-2608 (2017)
  36. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Chen X, Li X, Zhang W, He J, Xu B, Lei B, Wang Z, Cates C, Rousselle T, Li J. Metab. Clin. Exp. 83 256-270 (2018)
  37. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK. Vernia S, Cavanagh-Kyros J, Barrett T, Tournier C, Davis RJ. Cell Rep 14 2273-2280 (2016)
  38. Post-translational regulation of mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-2 in macrophages following lipopolysaccharide stimulation: the role of the C termini of the phosphatases in determining their stability. Crowell S, Wancket LM, Shakibi Y, Xu P, Xue J, Samavati L, Nelin LD, Liu Y. J. Biol. Chem. 289 28753-28764 (2014)
  39. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6-dependent proinflammatory responses in monocytes and macrophages. Khilwani B, Mukhopadhaya A, Chattopadhyay K. Biochem. J. 466 147-161 (2015)
  40. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Olson CM, Liang Y, Leggett A, Park WD, Li L, Mills CE, Elsarrag SZ, Ficarro SB, Zhang T, Düster R, Geyer M, Sim T, Marto JA, Sorger PK, Westover KD, Lin CY, Kwiatkowski N, Gray NS. Cell Chem Biol 26 792-803.e10 (2019)
  41. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins. Girnius N, Davis RJ. Cell Rep 21 1910-1921 (2017)
  42. Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine. Dubiella C, Baur R, Cui H, Huber EM, Groll M. Angew. Chem. Int. Ed. Engl. 54 15888-15891 (2015)
  43. Sphingosine kinase inhibitors decrease viability and induce cell death in natural killer-large granular lymphocyte leukemia. LeBlanc FR, Liu X, Hengst J, Fox T, Calvert V, Petricoin EF, Yun J, Feith DJ, Loughran TP. Cancer Biol. Ther. 16 1830-1840 (2015)
  44. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Cell Chem Biol 27 525-537.e6 (2020)
  45. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Wang J, Ge P, Qiang L, Tian F, Zhao D, Chai Q, Zhu M, Zhou R, Meng G, Iwakura Y, Gao GF, Liu CH. Nat Commun 8 244 (2017)
  46. JNK pathway inhibition selectively primes pancreatic cancer stem cells to TRAIL-induced apoptosis without affecting the physiology of normal tissue resident stem cells. Recio-Boiles A, Ilmer M, Rhea PR, Kettlun C, Heinemann ML, Ruetering J, Vykoukal J, Alt E. Oncotarget 7 9890-9906 (2016)
  47. Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome. Rao S, Gurbani D, Du G, Everley RA, Browne CM, Chaikuad A, Tan L, Schröder M, Gondi S, Ficarro SB, Sim T, Kim ND, Berberich MJ, Knapp S, Marto JA, Westover KD, Sorger PK, Gray NS. Cell Chem Biol 26 818-829.e9 (2019)
  48. Manipulating JNK signaling with (--)-zuonin A. Kaoud TS, Park H, Mitra S, Yan C, Tseng CC, Shi Y, Jose J, Taliaferro JM, Lee K, Ren P, Hong J, Dalby KN. ACS Chem. Biol. 7 1873-1883 (2012)
  49. S100A4 Elevation Empowers Expression of Metastasis Effector Molecules in Human Breast Cancer. Ismail TM, Bennett D, Platt-Higgins AM, Al-Medhity M, Barraclough R, Rudland PS. Cancer Res. 77 780-789 (2017)
  50. Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Huang G, Chubinskaya S, Liao W, Loeser RF. Osteoarthr. Cartil. 25 1505-1515 (2017)
  51. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf MI, Fresser F, Baier G, Kremser L, Lindner H, Troppmair J. Sci Rep 6 20930 (2016)
  52. Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. McGuire VA, Rosner D, Ananieva O, Ross EA, Elcombe SE, Naqvi S, van den Bosch MMW, Monk CE, Ruiz-Zorrilla Diez T, Clark AR, Arthur JSC. Mol. Cell. Biol. 37 (2017)
  53. Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Reynders M, Chaikuad A, Berger BT, Bauer K, Koch P, Laufer S, Knapp S, Trauner D. Angew Chem Int Ed Engl 60 20178-20183 (2021)
  54. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR. Bioorg. Med. Chem. Lett. 25 4787-4792 (2015)
  55. Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. Katari SK, Natarajan P, Swargam S, Kanipakam H, Pasala C, Umamaheswari A. J. Recept. Signal Transduct. Res. 36 558-571 (2016)
  56. JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Kani K, Garri C, Tiemann K, Malihi PD, Punj V, Nguyen AL, Lee J, Hughes LD, Alvarez RM, Wood DM, Joo AY, Katz JE, Agus DB, Mallick P. Mol. Cancer Ther. 16 1645-1657 (2017)
  57. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. Wu S, Zheng Q, Xing X, Dong Y, Wang Y, You Y, Chen R, Hu C, Chen J, Gao D, Zhao Y, Wang Z, Xue T, Ren Z, Cui J. J. Exp. Clin. Cancer Res. 37 99 (2018)
  58. Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase. Schattauer SS, Land BB, Reichard KL, Abraham AD, Burgeno LM, Kuhar JR, Phillips PEM, Ong SE, Chavkin C. Nat Commun 8 743 (2017)
  59. Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. Warthaka M, Adelmann CH, Kaoud TS, Edupuganti R, Yan C, Johnson WH, Ferguson S, Tavares CD, Pence LJ, Anslyn EV, Ren P, Tsai KY, Dalby KN. ACS Med Chem Lett 6 47-52 (2015)
  60. The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Hansen R, Peters U, Babbar A, Chen Y, Feng J, Janes MR, Li LS, Ren P, Liu Y, Zarrinkar PP. Nat. Struct. Mol. Biol. 25 454-462 (2018)
  61. (±)-Japonones A and B, two pairs of new enantiomers with anti-KSHV activities from Hypericum japonicum. Hu L, Zhu H, Li L, Huang J, Sun W, Liu J, Li H, Luo Z, Wang J, Xue Y, Zhang Y, Zhang Y. Sci Rep 6 27588 (2016)
  62. Active elimination of intestinal cells drives oncogenic growth in organoids. Krotenberg Garcia A, Fumagalli A, Le HQ, Jackstadt R, Lannagan TRM, Sansom OJ, van Rheenen J, Suijkerbuijk SJE. Cell Rep 36 109307 (2021)
  63. Heat shock protein 90 inhibitor mycoepoxydiene modulates kinase signaling in cervical cancer cells and inhibits in-vivo tumor growth. Lin P, Yi Y, Lu M, Wang M, Yang Y, Lu Y, Song S, Zheng Z, Deng X, Zhang L. Anticancer Drugs 26 25-34 (2015)
  64. Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway. Shen Y, Park CS, Suppipat K, Mistretta TA, Puppi M, Horton TM, Rabin K, Gray NS, Meijerink JPP, Lacorazza HD. Leukemia 31 1314-1324 (2017)
  65. Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Shah M, Smolko CM, Kinicki S, Chapman ZD, Brautigan DL, Janes KA. Mol. Cell Proteomics 16 S244-S262 (2017)
  66. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Peterson LB, Yaffe MB, Imperiali B. Biochemistry 53 5771-5778 (2014)
  67. Wnt Signaling Drives Prostate Cancer Bone Metastatic Tropism and Invasion. Wang Y, Singhal U, Qiao Y, Kasputis T, Chung JS, Zhao H, Chammaa F, Belardo JA, Roth TM, Zhang H, Zaslavsky AB, Palapattu GS, Pienta KJ, Chinnaiyan AM, Taichman RS, Cackowski FC, Morgan TM. Transl Oncol 13 100747 (2020)
  68. Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Li QV, Dixon G, Verma N, Rosen BP, Gordillo M, Luo R, Xu C, Wang Q, Soh CL, Yang D, Crespo M, Shukla A, Xiang Q, Dündar F, Zumbo P, Witkin M, Koche R, Betel D, Chen S, Massagué J, Garippa R, Evans T, Beer MA, Huangfu D. Nat. Genet. 51 999-1010 (2019)
  69. JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. Du L, Anderson A, Nguyen K, Ojeda SS, Ortiz-Rivera I, Nguyen TN, Zhang T, Kaoud TS, Gray NS, Dalby KN, Tsai KY. ACS Chem Biol 14 1426-1435 (2019)
  70. JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21. Colleoni B, Paternot S, Pita JM, Bisteau X, Coulonval K, Davis RJ, Raspé E, Roger PP. Oncogene 36 4349-4361 (2017)
  71. Specific c-Jun N-Terminal Kinase Inhibitor, JNK-IN-8 Suppresses Mesenchymal Profile of PTX-Resistant MCF-7 Cells through Modulating PI3K/Akt, MAPK and Wnt Signaling Pathways. Ozfiliz Kilbas P, Sonmez O, Uysal-Onganer P, Coker Gurkan A, Obakan Yerlikaya P, Arisan ED. Biology (Basel) 9 E320 (2020)
  72. Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members. Malik N, Vollmer S, Nanda SK, Lopez-Pelaez M, Prescott A, Gray N, Cohen P. Biochem. J. 468 363-372 (2015)
  73. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. Oncotarget 6 11863-11881 (2015)
  74. p38 MAPK signalling regulates cytokine production in IL-33 stimulated Type 2 Innate Lymphoid cells. Petrova T, Pesic J, Pardali K, Gaestel M, Arthur JSC. Sci Rep 10 3479 (2020)
  75. A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Ebelt ND, Kaoud TS, Edupuganti R, Van Ravenstein S, Dalby KN, Van Den Berg CL. Oncotarget 8 104894-104912 (2017)
  76. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Foulkes DM, Byrne DP, Yeung W, Shrestha S, Bailey FP, Ferries S, Eyers CE, Keeshan K, Wells C, Drewry DH, Zuercher WJ, Kannan N, Eyers PA. Sci Signal 11 (2018)
  77. Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. Schröder M, Filippakopoulos P, Schwalm MP, Ferrer CA, Drewry DH, Knapp S, Chaikuad A. Int J Mol Sci 21 E7953 (2020)
  78. Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition. Jones DS, Jenney AP, Joughin BA, Sorger PK, Lauffenburger DA. Sci Signal 11 (2018)
  79. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. PLoS Pathog. 14 e1007418 (2018)
  80. Inhibitory and mechanistic investigations of oxo-lipids with human lipoxygenase isozymes. Armstrong MM, Diaz G, Kenyon V, Holman TR. Bioorg. Med. Chem. 22 4293-4297 (2014)
  81. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway. Li D, Liu N, Zhao L, Tong L, Kawano H, Yan HJ, Li HP. Brain Res. 1654 1-8 (2017)
  82. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. PLoS Pathog. 14 e1006975 (2018)
  83. The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. Li Z, Lim SK, Liang X, Lim YP. J. Biol. Chem. 293 20014-20028 (2018)
  84. c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD+ cleavage activity to inhibit mitochondrial respiration. Murata H, Khine CC, Nishikawa A, Yamamoto KI, Kinoshita R, Sakaguchi M. J. Biol. Chem. 293 18933-18943 (2018)
  85. p85β alters response to EGFR inhibitor in ovarian cancer through p38 MAPK-mediated regulation of DNA repair. Mak VC, Li X, Rao L, Zhou Y, Tsao SW, Cheung LW. Neoplasia 23 718-730 (2021)
  86. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Rehfeldt SCH, Laufer S, Goettert MI. Int J Mol Sci 22 3701 (2021)
  87. BCL2 inhibitor ABT-199 and JNK inhibitor SP600125 exhibit synergistic cytotoxicity against imatinib-resistant Ph+ ALL cells. Inoue C, Sobue S, Aoyama Y, Mizutani N, Kawamoto Y, Nishizawa Y, Ichihara M, Abe A, Hayakawa F, Suzuki M, Nozawa Y, Murate T. Biochem Biophys Rep 15 69-75 (2018)
  88. BDNF and JNK Signaling Modulate Cortical Interneuron and Perineuronal Net Development: Implications for Schizophrenia-Linked 16p11.2 Duplication Syndrome. Willis A, Pratt JA, Morris BJ. Schizophr Bull 47 812-826 (2021)
  89. Combination therapy of BCR-ABL-positive B cell acute lymphoblastic leukemia by tyrosine kinase inhibitor dasatinib and c-JUN N-terminal kinase inhibition. Xiao X, Liu P, Li D, Xia Z, Wang P, Zhang X, Liu M, Liao L, Jiao B, Ren R. J Hematol Oncol 13 80 (2020)
  90. Curcumin analog HO-3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. Chen CW, Hsieh MJ, Ju PC, Hsieh YH, Su CW, Chen YL, Yang SF, Lin CW. J Cell Mol Med 26 2273-2284 (2022)
  91. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Fisher DAC, Miner CA, Engle EK, Hu H, Collins TB, Zhou A, Allen MJ, Malkova ON, Oh ST. Leukemia 33 1978-1995 (2019)
  92. Differential Effects of Toll-Like Receptor Activation and Differential Mediation by MAP Kinases of Immune Responses in Microglial Cells. Kwon J, Arsenis C, Suessmilch M, McColl A, Cavanagh J, Morris BJ. Cell Mol Neurobiol (2021)
  93. H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. Nelson KJ, Bolduc JA, Wu H, Collins JA, Burke EA, Reisz JA, Klomsiri C, Wood ST, Yammani RR, Poole LB, Furdui CM, Loeser RF. J. Biol. Chem. 293 16376-16389 (2018)
  94. HER2-driven breast cancer suppression by the JNK signaling pathway. Itah Z, Chaudhry S, Raju Ponny S, Aydemir O, Lee A, Cavanagh-Kyros J, Tournier C, Muller WJ, Davis RJ. Proc Natl Acad Sci U S A 120 e2218373120 (2023)
  95. Identification of the JNK-Active Triple-Negative Breast Cancer Cluster Associated With an Immunosuppressive Tumor Microenvironment. Semba T, Wang X, Xie X, Cohen EN, Reuben JM, Dalby KN, Long JP, Phi LTH, Tripathy D, Ueno NT. J Natl Cancer Inst 114 97-108 (2022)
  96. JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke. Zheng J, Dai Q, Han K, Hong W, Jia D, Mo Y, Lv Y, Tang H, Fu H, Geng W. J. Cell. Physiol. 235 2792-2799 (2020)
  97. JUN activation modulates chromatin accessibility to drive TNFα-induced mesenchymal transition in glioblastoma. Lv X, Li Q, Liu H, Gong M, Zhao Y, Hu J, Wu F, Wu X. J Cell Mol Med 26 4602-4612 (2022)
  98. Oxidative stress-induced JNK/AP-1 signaling is a major pathway involved in selective apoptosis of myelodysplastic syndrome cells by Withaferin-A. Oben KZ, Alhakeem SS, McKenna MK, Brandon JA, Mani R, Noothi SK, Jinpeng L, Akunuru S, Dhar SK, Singh IP, Liang Y, Wang C, Abdel-Latif A, Stills HF, St Clair DK, Geiger H, Muthusamy N, Tohyama K, Gupta RC, Bondada S. Oncotarget 8 77436-77452 (2017)
  99. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. Liu R, Zhan S, Che Y, Shen J. J Med Chem 65 1525-1535 (2022)
  100. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Yan Y, Zhou B, Qian C, Vasquez A, Kamra M, Chatterjee A, Lee YJ, Yuan X, Ellis L, Di Vizio D, Posadas EM, Kyprianou N, Knudsen BS, Shah K, Murali R, Gertych A, You S, Freeman MR, Yang W. Nat Commun 13 669 (2022)
  101. Regulation of GTPase function by autophosphorylation. Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Mol Cell 82 950-968.e14 (2022)
  102. Role of c-Jun-N-Terminal Kinase in Pregnane X Receptor-Mediated Induction of Human Cytochrome P4503A4 In Vitro. Taneja G, Chu C, Maturu P, Moorthy B, Ghose R. Drug Metab. Dispos. 46 397-404 (2018)
  103. Role of the MAPK/cJun NH2-terminal kinase signaling pathway in starvation-induced autophagy. Barutcu SA, Girnius N, Vernia S, Davis RJ. Autophagy 14 1586-1595 (2018)
  104. Salt-inducible kinases are required for the IL-33-dependent secretion of cytokines and chemokines in mast cells. Darling NJ, Arthur JSC, Cohen P. J Biol Chem 296 100428 (2021)
  105. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines. Toviwek B, Suphakun P, Choowongkomon K, Hannongbua S, Gleeson MP. Bioorg. Med. Chem. Lett. 27 4749-4754 (2017)
  106. Transcriptome Profiling Reveals CD73 and Age-Driven Changes in Neutrophil Responses against Streptococcus pneumoniae. Bhalla M, Heinzinger LR, Morenikeji OB, Marzullo B, Thomas BN, Bou Ghanem EN. Infect Immun 89 e0025821 (2021)
  107. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. Guo M, Härtlova A, Gierliński M, Prescott A, Castellvi J, Losa JH, Petersen SK, Wenzel UA, Dill BD, Emmerich CH, Ramon Y Cajal S, Russell DG, Trost M. EMBO J. 38 (2019)
  108. N-Aromatic-Substituted Indazole Derivatives as Brain-Penetrant and Orally Bioavailable JNK3 Inhibitors. Feng Y, Park H, Ryu JC, Yoon SO. ACS Med Chem Lett 12 1546-1552 (2021)
  109. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Lee S, Micalizzi D, Truesdell SS, Bukhari SIA, Boukhali M, Lombardi-Story J, Kato Y, Choo MK, Dey-Guha I, Ji F, Nicholson BT, Myers DT, Lee D, Mazzola MA, Raheja R, Langenbucher A, Haradhvala NJ, Lawrence MS, Gandhi R, Tiedje C, Diaz-Muñoz MD, Sweetser DA, Sadreyev R, Sykes D, Haas W, Haber DA, Maheswaran S, Vasudevan S. Genome Biol 21 33 (2020)
  110. Activation of JNK signaling promotes all-trans-retinal-induced photoreceptor apoptosis in mice. Liao C, Cai B, Feng Y, Chen J, Wu Y, Zhuang J, Liu Z, Wu Y. J Biol Chem 295 6958-6971 (2020)
  111. Antileukemic properties of the kinase inhibitor OTSSP167 in T-cell acute lymphoblastic leukemia. Bridges CS, Chen TJ, Puppi M, Rabin KR, Lacorazza HD. Blood Adv 7 422-435 (2023)
  112. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. J Exp Clin Cancer Res 42 68 (2023)
  113. Control of cell state transitions. Rukhlenko OS, Halasz M, Rauch N, Zhernovkov V, Prince T, Wynne K, Maher S, Kashdan E, MacLeod K, Carragher NO, Kolch W, Kholodenko BN. Nature 609 975-985 (2022)
  114. Covalent Inhibition of HIV-1 Integrase by N-Succinimidyl Peptides. Chandra K, Das P, Mamidi S, Hurevich M, Iosub-Amir A, Metanis N, Reches M, Friedler A. ChemMedChem 11 1987-1994 (2016)
  115. Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. Borsari C, Keles E, McPhail JA, Schaefer A, Sriramaratnam R, Goch W, Schaefer T, De Pascale M, Bal W, Gstaiger M, Burke JE, Wymann MP. J Am Chem Soc 144 6326-6342 (2022)
  116. Endoderm development requires centrioles to restrain p53-mediated apoptosis in the absence of ERK activity. Xie C, Abrams SR, Herranz-Pérez V, García-Verdugo JM, Reiter JF. Dev Cell 56 3334-3348.e6 (2021)
  117. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Mol Biol Cell 31 2597-2629 (2020)
  118. Enhancer reprogramming promotes the activation of cancer-associated fibroblasts and breast cancer metastasis. Li Q, Lv X, Han C, Kong Y, Dai Z, Huo D, Li T, Li D, Li W, Wang X, Zhao Q, Ming J, Yang W, Chen Y, Wu X. Theranostics 12 7491-7508 (2022)
  119. Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Dichtl S, Sanin DE, Koss CK, Willenborg S, Petzold A, Tanzer MC, Dahl A, Kabat AM, Lindenthal L, Zeitler L, Satzinger S, Strasser A, Mann M, Roers A, Eming SA, El Kasmi KC, Pearce EJ, Murray PJ. Life Sci Alliance 5 e202101315 (2022)
  120. IL-3-Induced Immediate Expression of c-fos and c-jun Is Modulated by the IKK2-JNK Axis. Fujita H, Fujita T, Fujii H. Cells 11 1451 (2022)
  121. Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data. Strang BL, Asquith CRM, Moshrif HF, Ho CM, Zuercher WJ, Al-Ali H. PLoS ONE 13 e0201321 (2018)
  122. Infliction of proteotoxic stresses by impairment of the unfolded protein response or proteasomal inhibition as a therapeutic strategy for mast cell leukemia. Wilhelm T, Bick F, Peters K, Mohta V, Tirosh B, Patterson JB, Kharabi-Masouleh B, Huber M. Oncotarget 9 2984-3000 (2018)
  123. Inhibition of the MAP2K7-JNK pathway with 5Z-7-oxozeaenol induces apoptosis in T-cell acute lymphoblastic leukemia. Chen TJ, Du W, Junco JJ, Bridges CS, Shen Y, Puppi M, Rabin KR, Lacorazza HD. Oncotarget 12 1787-1801 (2021)
  124. Integrative discovery of treatments for high-risk neuroblastoma. Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen TK, Dyberg C, Doroszko M, Larsson I, Sundström A, Arsenian Henriksson M, Påhlman S, Bexell D, Vanlandewijck M, Kogner P, Jörnsten R, Krona C, Nelander S. Nat Commun 11 71 (2020)
  125. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Sun L, Patai ÁV, Hogenson TL, Fernandez-Zapico ME, Qin B, Sinicrope FA. Oncogene 40 5105-5115 (2021)
  126. Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. Lipner MB, Peng XL, Jin C, Xu Y, Gao Y, East MP, Rashid NU, Moffitt RA, Herrera Loeza SG, Morrison AB, Golitz BT, Vaziri C, Graves LM, Johnson GL, Yeh JJ. JCI Insight 5 (2020)
  127. JNK‑IN‑8 treatment alleviates lipopolysaccharide‑induced acute lung injury via suppression of inflammation and oxidative stress regulated by JNK/NF‑κB signaling. Du J, Wang G, Luo H, Liu N, Xie J. Mol Med Rep 23 1 (2021)
  128. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. J Immunol 206 2966-2979 (2021)
  129. Live-cell imaging and profiling of c-Jun N-terminal kinases using covalent inhibitor-derived probes. Qian L, Pan S, Lee JS, Ge J, Li L, Yao SQ. Chem. Commun. (Camb.) 55 1092-1095 (2019)
  130. Mechanism of TNFα-induced downregulation of salt-inducible kinase 2 in adipocytes. Vaváková M, Hofwimmer K, Laurencikiene J, Göransson O. Sci Rep 13 10559 (2023)
  131. Metabolic Modifier Screen Reveals Secondary Targets of Protein Kinase Inhibitors within Nucleotide Metabolism. Abt ER, Rosser EW, Durst MA, Lok V, Poddar S, Le TM, Cho A, Kim W, Wei L, Song J, Capri JR, Xu S, Wu N, Slavik R, Jung ME, Damoiseaux R, Czernin J, Donahue TR, Lavie A, Radu CG. Cell Chem Biol 27 197-205.e6 (2020)
  132. Mycophenolate Mofetil induces c-Jun-N-terminal kinase expression in 22Rv1 cells: an impact on androgen receptor signaling. Zenata O, Dvorak Z, Vrzal R. J Cancer 9 1915-1924 (2018)
  133. Phosphorylation-Assisted Luciferase Complementation Assay Designed to Monitor Kinase Activity and Kinase-Domain-Mediated Protein-Protein Binding. Póti ÁL, Dénes L, Papp K, Bató C, Bánóczi Z, Reményi A, Alexa A. Int J Mol Sci 24 14854 (2023)
  134. Photocaging of Pyridinylimidazole-Based Covalent JNK3 Inhibitors Affords Spatiotemporal Control of the Binding Affinity in Live Cells. Hoffelner BS, Andreev S, Plank N, Koch P. Pharmaceuticals (Basel) 16 264 (2023)
  135. Profiling MAP kinase cysteines for targeted covalent inhibitor design. Liu R, Verma N, Henderson JA, Zhan S, Shen J. RSC Med Chem 13 54-63 (2022)
  136. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Geurink PP, Aimon A, Amitai G, Bellini D, Bennett J, Fairhead M, Fedorov O, Gabizon R, Gan J, Guo J, Plotnikov A, Reznik N, Ruda GF, Díaz-Sáez L, Straub VM, Szommer T, Velupillai S, Zaidman D, Zhang Y, Coker AR, Dowson CG, Barr HM, Wang C, Huber KVM, Brennan PE, Ovaa H, von Delft F, London N. J. Am. Chem. Soc. 141 8951-8968 (2019)
  137. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation. Schattauer SS, Bedini A, Summers F, Reilly-Treat A, Andrews MM, Land BB, Chavkin C. J. Biol. Chem. 294 16884-16896 (2019)
  138. Signalling inhibition by ponatinib disrupts productive alternative lengthening of telomeres (ALT). Kusuma FK, Prabhu A, Tieo G, Ahmed SM, Dakle P, Yong WK, Pathak E, Madan V, Jiang YY, Tam WL, Kappei D, Dröge P, Koeffler HP, Jeitany M. Nat Commun 14 1919 (2023)
  139. Structure-Based Design of Selective, Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors. Rowlands RA, Cato MC, Waldschmidt HV, Bouley RA, Chen Q, Avramova L, Larsen SD, Tesmer JJG, White AD. ACS Med Chem Lett 10 1628-1634 (2019)
  140. Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels. Singh N, Zeke A, Reményi A. Int J Mol Sci 23 3320 (2022)
  141. Targeting JNK pathway promotes human hematopoietic stem cell expansion. Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, Li Y, Li Y, Zhang J, Chen W, Shi M, Shang L, Yin M, Wang C, Deng H. Cell Discov 5 2 (2019)
  142. Thiophene-Pyrazolourea Derivatives as Potent, Orally Bioavailable, and Isoform-Selective JNK3 Inhibitors. Feng Y, Park H, Bauer L, Ryu JC, Yoon SO. ACS Med Chem Lett 12 24-29 (2021)
  143. Transforming growth factor-β downregulates sGC subunit expression in pulmonary artery smooth muscle cells via MEK and ERK signaling. Du L, Roberts JD. Am. J. Physiol. Lung Cell Mol. Physiol. 316 L20-L34 (2019)
  144. c-JUN n-Terminal Kinase (JNK) Signaling in Autosomal Dominant Polycystic Kidney Disease. Smith AO, Jonassen JA, Preval KM, Davis RJ, Pazour GJ. J Cell Signal 3 62-78 (2022)
  145. p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis. Mager CE, Mormol JM, Shelton ED, Murphy PR, Bowman BA, Barley TJ, Wang X, Linn SC, Liu K, Nelin LD, Hafner M, Liu Y. J Biol Chem 299 103043 (2023)
  146. p38δ controls Mitogen- and Stress-activated Kinase-1 (MSK1) function in response to toll-like receptor activation in macrophages. Díaz-Mora E, González-Romero D, Meireles-da-Silva M, Sanz-Ezquerro JJ, Cuenda A. Front Cell Dev Biol 11 1083033 (2023)