3uq3 Citations

The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.

Abstract

Sti1/Hop is a modular protein required for the transfer of client proteins from the Hsp70 to the Hsp90 chaperone system in eukaryotes. It binds Hsp70 and Hsp90 simultaneously via TPR (tetratricopeptide repeat) domains. Sti1/Hop contains three TPR domains (TPR1, TPR2A and TPR2B) and two domains of unknown structure (DP1 and DP2). We show that TPR2A is the high affinity Hsp90-binding site and TPR1 and TPR2B bind Hsp70 with moderate affinity. The DP domains exhibit highly homologous α-helical folds as determined by NMR. These, and especially DP2, are important for client activation in vivo. The core module of Sti1 for Hsp90 inhibition is the TPR2A-TPR2B segment. In the crystal structure, the two TPR domains are connected via a rigid linker orienting their peptide-binding sites in opposite directions and allowing the simultaneous binding of TPR2A to the Hsp90 C-terminal domain and of TPR2B to Hsp70. Both domains also interact with the Hsp90 middle domain. The accessory TPR1-DP1 module may serve as an Hsp70-client delivery system for the TPR2A-TPR2B-DP2 segment, which is required for client activation in vivo.

Reviews - 3uq3 mentioned but not cited (1)

  1. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Wang L, Xu X, Jiang Z, You Q. Acta Pharm Sin B 10 1904-1925 (2020)

Articles - 3uq3 mentioned but not cited (8)

  1. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. Schmid AB, Lagleder S, Gräwert MA, Röhl A, Hagn F, Wandinger SK, Cox MB, Demmer O, Richter K, Groll M, Kessler H, Buchner J. EMBO J 31 1506-1517 (2012)
  2. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Röhl A, Wengler D, Madl T, Lagleder S, Tippel F, Herrmann M, Hendrix J, Richter K, Hack G, Schmid AB, Kessler H, Lamb DC, Buchner J. Nat Commun 6 6655 (2015)
  3. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Wang RY, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Nature 601 460-464 (2022)
  4. Hop/Sti1 phosphorylation inhibits its co-chaperone function. Röhl A, Tippel F, Bender E, Schmid AB, Richter K, Madl T, Buchner J. EMBO Rep 16 240-249 (2015)
  5. Biophysical analysis of Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop) reveals a monomer that is characterised by folded segments connected by flexible linkers. Makumire S, Zininga T, Vahokoski J, Kursula I, Shonhai A. PLoS One 15 e0226657 (2020)
  6. Analyzing protein dynamics using hydrogen exchange mass spectrometry. Hentze N, Mayer MP. J Vis Exp (2013)
  7. Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins. Dubreuil B, Levy ED. Front Mol Biosci 8 626729 (2021)
  8. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Subcell Biochem 101 319-350 (2023)


Reviews citing this publication (32)

  1. Molecular chaperone functions in protein folding and proteostasis. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Annu Rev Biochem 82 323-355 (2013)
  2. The HSP90 chaperone machinery. Schopf FH, Biebl MM, Buchner J. Nat Rev Mol Cell Biol 18 345-360 (2017)
  3. The chaperone Hsp90: changing partners for demanding clients. Röhl A, Rohrberg J, Buchner J. Trends Biochem Sci 38 253-262 (2013)
  4. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM. Front Neurosci 11 254 (2017)
  5. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Smith MC, Gestwicki JE. Expert Rev Mol Med 14 e16 (2012)
  6. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. Genest O, Wickner S, Doyle SM. J Biol Chem 294 2109-2120 (2019)
  7. Hsp90 interaction with clients. Karagöz GE, Rüdiger SG. Trends Biochem Sci 40 117-125 (2015)
  8. Hsp90: breaking the symmetry. Mayer MP, Le Breton L. Mol Cell 58 8-20 (2015)
  9. Structure, Function, and Regulation of the Hsp90 Machinery. Biebl MM, Buchner J. Cold Spring Harb Perspect Biol 11 a034017 (2019)
  10. Review: The HSP90 molecular chaperone-an enigmatic ATPase. Pearl LH. Biopolymers 105 594-607 (2016)
  11. Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Walton-Diaz A, Khan S, Bourboulia D, Trepel JB, Neckers L, Mollapour M. Future Med Chem 5 1059-1071 (2013)
  12. Regulation of protein turnover by heat shock proteins. Bozaykut P, Ozer NK, Karademir B. Free Radic Biol Med 77 195-209 (2014)
  13. Molecular cochaperones: tumor growth and cancer treatment. Calderwood SK. Scientifica (Cairo) 2013 217513 (2013)
  14. Heat shock protein 90 (Hsp90): A novel antifungal target against Aspergillus fumigatus. Lamoth F, Juvvadi PR, Steinbach WJ. Crit Rev Microbiol 42 310-321 (2016)
  15. Functions of the Hsp90 chaperone system: lifting client proteins to new heights. Eckl JM, Richter K. Int J Biochem Mol Biol 4 157-165 (2013)
  16. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G. Biotechnol Genet Eng Rev 33 26-39 (2017)
  17. Steroid Receptor-Associated Immunophilins: A Gateway to Steroid Signalling. Ratajczak T, Cluning C, Ward BK. Clin Biochem Rev 36 31-52 (2015)
  18. Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Zheng T, Yang Y, Castañeda CA. Biochem J 477 3471-3497 (2020)
  19. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Zininga T, Shonhai A. Int J Mol Sci 20 E5930 (2019)
  20. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors. Sasvari Z, Alatriste Gonzalez P, Nagy PD. Front Plant Sci 5 383 (2014)
  21. Structural components involved in plastid protein import. Schwenkert S, Dittmer S, Soll J. Essays Biochem 62 65-75 (2018)
  22. Advances towards Understanding the Mechanism of Action of the Hsp90 Complex. Prodromou C, Bjorklund DM. Biomolecules 12 600 (2022)
  23. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Kumalo HM, Bhakat S, Bhakat S, Soliman ME. Chem Biol Drug Des 86 1131-1160 (2015)
  24. The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Bhattacharya K, Picard D. Cell Mol Life Sci 78 7257-7273 (2021)
  25. HOP, a Co-chaperone Involved in Response to Stress in Plants. Toribio R, Mangano S, Fernández-Bautista N, Muñoz A, Castellano MM. Front Plant Sci 11 591940 (2020)
  26. Improvement on Permeability of Cyclic Peptide/Peptidomimetic: Backbone N-Methylation as A Useful Tool. Li Y, Li W, Xu Z. Mar Drugs 19 311 (2021)
  27. With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Altinok S, Sanchez-Hodge R, Stewart M, Smith K, Schisler JC. Cells 10 3121 (2021)
  28. DnaJC7 in Amyotrophic Lateral Sclerosis. Dilliott AA, Andary CM, Stoltz M, Petropavlovskiy AA, Farhan SMK, Duennwald ML. Int J Mol Sci 23 4076 (2022)
  29. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Karunanayake C, Page RC. Exp Biol Med (Maywood) 246 1419-1434 (2021)
  30. Heat Shock Proteins: Potential Modulators and Candidate Biomarkers of Peripartum Cardiomyopathy. Chakafana G, Spracklen TF, Kamuli S, Zininga T, Shonhai A, Ntusi NAB, Sliwa K. Front Cardiovasc Med 8 633013 (2021)
  31. Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Wang L, Bergkvist L, Kumar R, Winblad B, Pavlov PF. Cells 10 2596 (2021)
  32. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Chiosis G, Digwal CS, Trepel JB, Neckers L. Nat Rev Mol Cell Biol (2023)

Articles citing this publication (84)

  1. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S. Cell 158 434-448 (2014)
  2. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA. Cell 157 1685-1697 (2014)
  3. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins. Rauch JN, Tse E, Freilich R, Mok SA, Makley LN, Southworth DR, Gestwicki JE. J Mol Biol 429 128-141 (2017)
  4. Modulation of the Hsp90 chaperone cycle by a stringent client protein. Lorenz OR, Freiburger L, Rutz DA, Krause M, Zierer BK, Alvira S, Cuéllar J, Valpuesta JM, Madl T, Sattler M, Buchner J. Mol Cell 53 941-953 (2014)
  5. Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Morgner N, Schmidt C, Beilsten-Edmands V, Ebong IO, Patel NA, Clerico EM, Kirschke E, Daturpalli S, Jackson SE, Agard D, Robinson CV. Cell Rep 11 759-769 (2015)
  6. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Alvira S, Cuéllar J, Röhl A, Yamamoto S, Itoh H, Alfonso C, Rivas G, Buchner J, Valpuesta JM. Nat Commun 5 5484 (2014)
  7. A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Zhang H, Amick J, Chakravarti R, Santarriaga S, Schlanger S, McGlone C, Dare M, Nix JC, Scaglione KM, Stuehr DJ, Misra S, Page RC. Structure 23 472-482 (2015)
  8. Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Li Z, Hartl FU, Bracher A. Nat Struct Mol Biol 20 929-935 (2013)
  9. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverría PC, Bernasconi L, Wider D, Sadian Y, Koopman MB, Villemin M, Bauer C, Rüdiger SGD, Quadroni M, Picard D. Nat Commun 11 5975 (2020)
  10. Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. Beraldo FH, Soares IN, Goncalves DF, Fan J, Thomas AA, Santos TG, Mohammad AH, Roffé M, Calder MD, Nikolova S, Hajj GN, Guimaraes AL, Massensini AR, Welch I, Betts DH, Gros R, Drangova M, Watson AJ, Bartha R, Prado VF, Martins VR, Prado MA. FASEB J 27 3594-3607 (2013)
  11. Evolution and function of eukaryotic-like proteins from sponge symbionts. Reynolds D, Thomas T. Mol Ecol 25 5242-5253 (2016)
  12. The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Hajj GN, Arantes CP, Dias MV, Roffé M, Costa-Silva B, Lopes MH, Porto-Carreiro I, Rabachini T, Lima FR, Beraldo FH, Prado MA, Linden R, Martins VR. Cell Mol Life Sci 70 3211-3227 (2013)
  13. Congress A global view of Hsp90 functions. Chiosis G, Dickey CA, Johnson JL. Nat Struct Mol Biol 20 1-4 (2013)
  14. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling. Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S. J Mol Biol 427 3877-3889 (2015)
  15. Tumor stress-induced phosphoprotein1 (STIP1) as a prognostic biomarker in ovarian cancer. Chao A, Lai CH, Tsai CL, Hsueh S, Hsueh C, Lin CY, Chou HH, Lin YJ, Chen HW, Chang TC, Wang TH. PLoS One 8 e57084 (2013)
  16. Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. Jores T, Lawatscheck J, Beke V, Franz-Wachtel M, Yunoki K, Fitzgerald JC, Macek B, Endo T, Kalbacher H, Buchner J, Rapaport D. J Cell Biol 217 3091-3108 (2018)
  17. High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex. Back R, Dominguez C, Rothé B, Bobo C, Beaufils C, Moréra S, Meyer P, Charpentier B, Branlant C, Allain FH, Manival X. Structure 21 1834-1847 (2013)
  18. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. J Biol Chem 289 9887-9901 (2014)
  19. Plasmodium falciparum Hop (PfHop) Interacts with the Hsp70 Chaperone in a Nucleotide-Dependent Fashion and Exhibits Ligand Selectivity. Zininga T, Makumire S, Gitau GW, Njunge JM, Pooe OJ, Klimek H, Scheurr R, Raifer H, Prinsloo E, Przyborski JM, Hoppe H, Shonhai A. PLoS One 10 e0135326 (2015)
  20. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Backes S, Bykov YS, Flohr T, Räschle M, Zhou J, Lenhard S, Krämer L, Mühlhaus T, Bibi C, Jann C, Smith JD, Steinmetz LM, Rapaport D, Storchová Z, Schuldiner M, Boos F, Herrmann JM. Cell Rep 35 108936 (2021)
  21. Chaperone-interacting TPR proteins in Caenorhabditis elegans. Haslbeck V, Eckl JM, Kaiser CJ, Papsdorf K, Hessling M, Richter K. J Mol Biol 425 2922-2939 (2013)
  22. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. Eckl JM, Rutz DA, Haslbeck V, Zierer BK, Reinstein J, Richter K. J Biol Chem 288 16032-16042 (2013)
  23. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Zuehlke AD, Johnson JL. Genetics 191 805-814 (2012)
  24. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. O'Meara TR, O'Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE. PLoS Biol 17 e3000358 (2019)
  25. Hsp70 and the Cochaperone StiA (Hop) Orchestrate Hsp90-Mediated Caspofungin Tolerance in Aspergillus fumigatus. Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Steinbach WJ. Antimicrob Agents Chemother 59 4727-4733 (2015)
  26. Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. Sarkar A, Dai Y, Haque MM, Seeger F, Ghosh A, Garcin ED, Montfort WR, Hazen SL, Misra S, Stuehr DJ. J Biol Chem 290 21615-21628 (2015)
  27. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. Sun M, Kotler JLM, Liu S, Street TO. J Biol Chem 294 6387-6396 (2019)
  28. All repeats are not equal: a module-based approach to guide repeat protein design. Sawyer N, Chen J, Regan L. J Mol Biol 425 1826-1838 (2013)
  29. Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (piRNA) biogenesis. Karam JA, Parikh RY, Nayak D, Rosenkranz D, Gangaraju VK. J Biol Chem 292 6039-6046 (2017)
  30. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. Blacklock K, Verkhivker GM. PLoS One 8 e71936 (2013)
  31. Heat Shock Protein 90 kDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor Tom70. Zanphorlin LM, Lima TB, Wong MJ, Balbuena TS, Minetti CA, Remeta DP, Young JC, Barbosa LR, Barbosa LR, Gozzo FC, Ramos CH. J Biol Chem 291 18620-18631 (2016)
  32. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. J Biol Chem 288 30614-30625 (2013)
  33. Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Kaziales A, Barkovits K, Marcus K, Richter K. Sci Rep 10 10733 (2020)
  34. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1. Soares IN, Caetano FA, Pinder J, Rodrigues BR, Beraldo FH, Ostapchenko VG, Durette C, Pereira GS, Lopes MH, Queiroz-Hazarbassanov N, Cunha IW, Sanematsu PI, Suzuki S, Bleggi-Torres LF, Schild-Poulter C, Thibault P, Dellaire G, Martins VR, Prado VF, Prado MA. Mol Cell Proteomics 12 3253-3270 (2013)
  35. Stress-induced phosphoprotein-1 maintains the stability of JAK2 in cancer cells. Tsai CL, Chao A, Jung SM, Tsai CN, Lin CY, Chen SH, Sue SC, Wang TH, Wang HS, Lai CH. Oncotarget 7 50548-50563 (2016)
  36. The hop-like stress-induced protein 1 cochaperone is a novel cell-intrinsic restriction factor for mitochondrial tombusvirus replication. Xu K, Lin JY, Nagy PD. J Virol 88 9361-9378 (2014)
  37. Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Reidy M, Kumar S, Anderson DE, Masison DC. Genetics 209 1139-1154 (2018)
  38. ATPase activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP). Yamamoto S, Subedi GP, Hanashima S, Satoh T, Otaka M, Wakui H, Sawada K, Yokota S, Yamaguchi Y, Kubota H, Itoh H. J Biol Chem 289 9880-9886 (2014)
  39. Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Cruz L, Arevalo Romero JA, Brandão Prado M, Santos TG, Hohmuth Lopes M. Stem Cell Rev Rep 14 262-276 (2018)
  40. A switch point in the molecular chaperone Hsp90 responding to client interaction. Rutz DA, Luo Q, Freiburger L, Madl T, Kaila VRI, Sattler M, Buchner J. Nat Commun 9 1472 (2018)
  41. Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana. Kissen R, Øverby A, Winge P, Bones AM. BMC Genomics 17 740 (2016)
  42. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities. Durech M, Trcka F, Man P, Blackburn EA, Hernychova L, Dvorakova P, Coufalova D, Kavan D, Vojtesek B, Muller P. Mol Cell Proteomics 15 1710-1727 (2016)
  43. The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6. Sacristan-Reviriego A, Bellingham J, Prodromou C, Boehm AN, Aichem, Kumaran N, Bainbridge J, Michaelides M, van der Spuy J. Hum Mol Genet 26 4465-4480 (2017)
  44. A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Rehn A, Lawatscheck J, Jokisch ML, Mader SL, Luo Q, Tippel F, Blank B, Richter K, Lang K, Kaila VRI, Buchner J. Nat Commun 11 1219 (2020)
  45. Mechanisms of neuroprotection against ischemic insult by stress-inducible phosphoprotein-1/prion protein complex. Beraldo FH, Ostapchenko VG, Xu JZ, Di Guglielmo GM, Fan J, Nicholls PJ, Caron MG, Prado VF, Prado MAM. J Neurochem 145 68-79 (2018)
  46. Interaction of heat shock protein 90 and the co-chaperone Cpr6 with Ura2, a bifunctional enzyme required for pyrimidine biosynthesis. Zuehlke AD, Wren N, Tenge V, Johnson JL. J Biol Chem 288 27406-27414 (2013)
  47. Molecular basis of the interaction of Hsp90 with its co-chaperone Hop. Lott A, Oroz J, Zweckstetter M. Protein Sci 29 2422-2432 (2020)
  48. Stress-induced phosphoprotein 1 acts as a scaffold protein for glycogen synthase kinase-3 beta-mediated phosphorylation of lysine-specific demethylase 1. Tsai CL, Chao AS, Jung SM, Lin CY, Chao A, Wang TH. Oncogenesis 7 31 (2018)
  49. Identification of R2TP complex of Leishmania donovani and Plasmodium falciparum using genome wide in-silico analysis. Ahmad M, Afrin F, Tuteja R. Commun Integr Biol 6 e26005 (2013)
  50. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. Lin KF, Fry MY, Saladi SM, Clemons WM. J Biol Chem 296 100441 (2021)
  51. Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90. Hatherley R, Clitheroe CL, Faya N, Tastan Bishop Ö. Biochem Biophys Res Commun 456 440-445 (2015)
  52. Serum Autoantibodies against STIP1 as a Potential Biomarker in the Diagnosis of Esophageal Squamous Cell Carcinoma. Xu YW, Liu CT, Huang XY, Huang LS, Luo YH, Hong CQ, Guo HP, Xu LY, Peng YH, Li EM. Dis Markers 2017 5384091 (2017)
  53. Y-632 inhibits heat shock protein 90 (Hsp90) function by disrupting the interaction between Hsp90 and Hsp70/Hsp90 organizing protein, and exerts antitumor activity in vitro and in vivo. Wang W, Liu Y, Zhao Z, Xie C, Xu Y, Hu Y, Quan H, Lou L. Cancer Sci 107 782-790 (2016)
  54. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. Wang T, Chen YP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ. BMC Genomics 18 618 (2017)
  55. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins. Perez-Riba A, Lowe AR, Main ERG, Itzhaki LS. Biophys J 114 2552-2562 (2018)
  56. Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of Bovine Oviduct Fluid. Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Int J Mol Sci 21 E1681 (2020)
  57. GOLPH3 Promotes Cancer Growth by Interacting With STIP1 and Regulating Telomerase Activity in Pancreatic Ductal Adenocarcinoma. Wang K, Jiang S, Huang A, Gao Y, Peng B, Li Z, Ma W, Songyang Z, Zhang S, He M, Li W. Front Oncol 10 575358 (2020)
  58. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Fry MY, Saladi SM, Clemons WM. Protein Sci 30 882-898 (2021)
  59. The Yeast Hsp70 Cochaperone Ydj1 Regulates Functional Distinction of Ssa Hsp70s in the Hsp90 Chaperoning Pathway. Gaur D, Singh P, Guleria J, Gupta A, Kaur S, Sharma D. Genetics 215 683-698 (2020)
  60. The joining of the Hsp90 and Hsp70 chaperone cycles yields transient interactions and stable intermediates: insights from mass spectrometry. Schmidt C, Beilsten-Edmands V, Robinson CV. Oncotarget 6 18276-18281 (2015)
  61. Detecting Posttranslational Modifications of Hsp90. Sager RA, Woodford MR, Neckers L, Mollapour M. Methods Mol Biol 1709 209-219 (2018)
  62. Exploring the Functional Complementation between Grp94 and Hsp90. Maharaj KA, Que NL, Hong F, Huck JD, Gill SK, Wu S, Li Z, Gewirth DT. PLoS One 11 e0166271 (2016)
  63. Expression and clinical significance of STIP1 in papillary thyroid carcinoma. Yuan MH, Zhou RS, She B, Xu HF, Wang JY, Wei LX. Tumour Biol 35 2391-2395 (2014)
  64. General Structural and Functional Features of Molecular Chaperones. Edkins AL, Boshoff A. Adv Exp Med Biol 1340 11-73 (2021)
  65. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O'Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. ACS Omega 6 13033-13056 (2021)
  66. Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in Caenorhabditis elegans. Zheng C, Atlas E, Lee HMT, Jao SLJ, Nguyen KCQ, Hall DH, Chalfie M. Development 147 dev189886 (2020)
  67. STIP1/HOP Regulates the Actin Cytoskeleton through Interactions with Actin and Changes in Actin-Binding Proteins Cofilin and Profilin. Beckley SJ, Hunter MC, Kituyi SN, Wingate I, Chakraborty A, Schwarz K, Makhubu MP, Rousseau RP, Ruck DK, de la Mare JA, Blatch GL, Edkins AL. Int J Mol Sci 21 E3152 (2020)
  68. Assembly mechanism of early Hsp90-Cdc37-kinase complexes. Keramisanou D, Vasantha Kumar MV, Boose N, Abzalimov RR, Gelis I. Sci Adv 8 eabm9294 (2022)
  69. Luminescence resonance energy transfer between genetically encoded donor and acceptor for protein-protein interaction studies in the molecular chaperone HSP70/HSP90 complexes. Bhattacharya K, Bernasconi L, Picard D. Sci Rep 8 2801 (2018)
  70. Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Darby JF, Vidler LR, Simpson PJ, Al-Lazikani B, Matthews SJ, Sharp SY, Pearl LH, Hoelder S, Workman P. Sci Rep 10 16000 (2020)
  71. Structural Communication between the E. coli Chaperones DnaK and Hsp90. Grindle MP, Carter B, Alao JP, Connors K, Tehver R, Kravats AN. Int J Mol Sci 22 2200 (2021)
  72. The Expression of FOXE-1 and STIP-1 in Papillary Thyroid Carcinoma and Their Relationship with Patient Prognosis. M Fouad E, A Harb O, Reham Amin S, M El Farargy O, M Habib F, M Gertallah L. Iran J Pathol 13 256-271 (2018)
  73. Hsp multichaperone complex buffers pathologically modified Tau. Moll A, Ramirez LM, Ninov M, Schwarz J, Urlaub H, Zweckstetter M. Nat Commun 13 3668 (2022)
  74. Intracellular targeting of STIP1 inhibits human cancer cell line growth. Lin CY, Chen SH, Tsai CL, Tang YH, Wu KY, Chao A. Transl Cancer Res 10 1313-1323 (2021)
  75. Molecular cloning of heat shock protein 70 and HOP from the freshwater green algae Closterium ehrenbergii and their responses to stress. Abassi S, Wang H, Ki JS. Cell Stress Chaperones 25 1117-1123 (2020)
  76. Native Mass Spectrometry-Guided Screening Identifies Hit Fragments for HOP-HSP90 PPI Inhibition. Vaaltyn MC, Mateos-Jimenez M, Müller R, Mackay CL, Edkins AL, Clarke DJ, Veale CGL. Chembiochem 23 e202200322 (2022)
  77. Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Lackie RE, de Miranda AS, Lim MP, Novikov V, Madrer N, Karunatilleke NC, Rutledge BS, Tullo S, Brickenden A, Maitland MER, Greenberg D, Gallino D, Luo W, Attaran A, Shlaifer I, Del Cid Pellitero E, Schild-Poulter C, Durcan TM, Fon EA, Duennwald M, Beraldo FH, Chakravarty MM, Bussey TJ, Saksida LM, Soreq H, Choy WY, Prado VF, Prado MAM. Acta Neuropathol 144 881-910 (2022)
  78. Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. McConnell JR, Dyson HJ, McAlpine SR. RSC Med Chem 12 410-415 (2021)
  79. Axon guidance genes modulate neurotoxicity of ALS-associated UBQLN2. Kim SH, Nichols KD, Anderson EN, Liu Y, Ramesh N, Jia W, Kuerbis CJ, Scalf M, Smith LM, Pandey UB, Tibbetts RS. Elife 12 e84382 (2023)
  80. Detecting Posttranslational Modifications of Hsp90 Isoforms. Sager RA, Backe SJ, Neckers L, Woodford MR, Mollapour M. Methods Mol Biol 2693 125-139 (2023)
  81. Intensification: A Resource for Amplifying Population-Genetic Signals with Protein Repeats. Chen J, Wang B, Regan L, Gerstein M. J Mol Biol 429 435-445 (2017)
  82. Plasmodium falciparum protein 'PfJ23' hosts distinct binding sites for major virulence factor 'PfEMP1' and Maurer's cleft marker 'PfSBP1'. Kaur J, Kumar V, Singh AP, Singh V, Bisht A, Dube T, Panda JJ, Behl A, Mishra PC, Hora R. Pathog Dis 76 (2018)
  83. Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation. Gaur D, Kumar N, Ghosh A, Singh P, Kumar P, Guleria J, Kaur S, Malik N, Saha S, Nystrom T, Sharma D. PLoS Genet 18 e1010442 (2022)
  84. [STIP1 correlates with tumor immune infiltration and prognosis as a potential immunotherapy target: a pan-cancer bioinformatics analysis]. Guan S, Shen Z, Lin M, Deng H, Fang Y. Nan Fang Yi Ke Da Xue Xue Bao 43 1179-1193 (2023)