3ue6 Citations

Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics.

Structure 20 698-706 (2012)
Cited: 42 times
EuropePMC logo PMID: 22483116

Abstract

Aureochrome1, a signaling photoreceptor from a eukaryotic photosynthetic stramenopile, confers blue-light-regulated DNA binding on the organism. Its topology, in which a C-terminal LOV sensor domain is linked to an N-terminal DNA-binding bZIP effector domain, contrasts with the reverse sensor-effector topology in most other known LOV-photoreceptors. How, then, is signal transmitted in Aureochrome1? The dark- and light-state crystal structures of Aureochrome1 LOV domain (AuLOV) show that its helical N- and C-terminal flanking regions are packed against the external surface of the core β sheet, opposite to the FMN chromophore on the internal surface. Light-induced conformational changes occur in the quaternary structure of the AuLOV dimer and in Phe298 of the Hβ strand in the core. The properties of AuLOV extend the applicability of LOV domains as versatile design modules that permit fusion to effector domains via either the N- or C-termini to confer blue-light sensitivity.

Reviews - 3ue6 mentioned but not cited (1)

  1. The clinical potential of optogenetic interrogation of pathogenesis. Gao TT, Oh TJ, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. Clin Transl Med 13 e1243 (2023)

Articles - 3ue6 mentioned but not cited (5)

  1. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence. Heintz U, Schlichting I. Elife 5 e11860 (2016)
  2. Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics. Mitra D, Yang X, Moffat K. Structure 20 698-706 (2012)
  3. Illuminating developmental biology through photochemistry. Kowalik L, Chen JK. Nat Chem Biol 13 587-598 (2017)
  4. LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis. Dorn M, Jurk M, Wartenberg A, Hahn A, Schmieder P. PLoS One 8 e81268 (2013)
  5. Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization. Ding Y, Kiryutin AS, Zhao Z, Xu QZ, Zhao KH, Kurle P, Bannister S, Kottke T, Sagdeev RZ, Ivanov KL, Yurkovskaya AV, Matysik J. Sci Rep 10 18658 (2020)


Reviews citing this publication (9)

  1. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Suetsugu N, Wada M. Plant Cell Physiol 54 8-23 (2013)
  2. Optogenetic control of cell function using engineered photoreceptors. Pathak GP, Vrana JD, Tucker CL. Biol Cell 105 59-72 (2013)
  3. Engineering genetically-encoded tools for optogenetic control of protein activity. Liu Q, Liu Q, Tucker CL. Curr Opin Chem Biol 40 17-23 (2017)
  4. Natural photoreceptors and their application to synthetic biology. Schmidt D, Cho YK. Trends Biotechnol 33 80-91 (2015)
  5. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. Takahashi F. J Plant Res 129 189-197 (2016)
  6. Following Optogenetic Dimerizers and Quantitative Prospects. Niu J, Ben Johny M, Dick IE, Inoue T. Biophys J 111 1132-1140 (2016)
  7. Aureochromes - Blue Light Receptors. Matiiv AB, Chekunova EM. Biochemistry (Mosc) 83 662-673 (2018)
  8. Applications of hydrogen deuterium exchange (HDX) for the characterization of conformational dynamics in light-activated photoreceptors. Lindner R, Heintz U, Winkler A. Front Mol Biosci 2 33 (2015)
  9. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. McNamara HM, Ramm B, Toettcher JE. Semin Cell Dev Biol 141 33-42 (2023)

Articles citing this publication (27)

  1. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Inglés-Prieto Á, Janovjak H. EMBO J 33 1713-1726 (2014)
  2. AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Huysman MJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L. Plant Cell 25 215-228 (2013)
  3. Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins. Kawano F, Aono Y, Suzuki H, Sato M. PLoS One 8 e82693 (2013)
  4. Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1. Hisatomi O, Takeuchi K, Zikihara K, Ookubo Y, Nakatani Y, Takahashi F, Tokutomi S, Kataoka H. Plant Cell Physiol 54 93-106 (2013)
  5. Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum. Banerjee A, Herman E, Kottke T, Essen LO. Structure 24 171-178 (2016)
  6. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. Hisatomi O, Nakatani Y, Takeuchi K, Takahashi F, Kataoka H. J Biol Chem 289 17379-17391 (2014)
  7. Signaling States of a Short Blue-Light Photoreceptor Protein PpSB1-LOV Revealed from Crystal Structures and Solution NMR Spectroscopy. Röllen K, Granzin J, Panwalkar V, Arinkin V, Rani R, Hartmann R, Krauss U, Jaeger KE, Willbold D, Batra-Safferling R. J Mol Biol 428 3721-3736 (2016)
  8. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T. Nucleic Acids Res 44 5957-5970 (2016)
  9. Engineering AraC to make it responsive to light instead of arabinose. Romano E, Baumschlager A, Akmeriç EB, Palanisamy N, Houmani M, Schmidt G, Öztürk MA, Ernst L, Khammash M, Di Ventura B. Nat Chem Biol 17 817-827 (2021)
  10. Essential role of the A'α/Aβ gap in the N-terminal upstream of LOV2 for the blue light signaling from LOV2 to kinase in Arabidopsis photototropin1, a plant blue light receptor. Kashojiya S, Okajima K, Shimada T, Tokutomi S. PLoS One 10 e0124284 (2015)
  11. Isolation, expression, and characterization of blue light receptor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae). Deng Y, Yao J, Fu G, Guo H, Duan D. Mar Biotechnol (NY) 16 135-143 (2014)
  12. A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation. Kalvaitis ME, Johnson LA, Mart RJ, Rizkallah P, Allemann RK. Biochemistry 58 2608-2616 (2019)
  13. Evolution of PAS domains and PAS-containing genes in eukaryotes. Mei Q, Dvornyk V. Chromosoma 123 385-405 (2014)
  14. Structure of a LOV protein in apo-state and implications for construction of LOV-based optical tools. Arinkin V, Granzin J, Röllen K, Krauss U, Jaeger KE, Willbold D, Batra-Safferling R. Sci Rep 7 42971 (2017)
  15. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy. Kerruth S, Ataka K, Frey D, Schlichting I, Heberle J. PLoS One 9 e103307 (2014)
  16. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells. Goett-Zink L, Klocke JL, Bögeholz LAK, Kottke T. J Biol Chem 295 11729-11741 (2020)
  17. Mapping networks of light-dark transition in LOV photoreceptors. Kaur Grewal R, Mitra D, Roy S. Bioinformatics 31 3608-3616 (2015)
  18. Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease. Ingles-Prieto A, Furthmann N, Crossman SH, Tichy AM, Hoyer N, Petersen M, Zheden V, Biebl J, Reichhart E, Gyoergy A, Siekhaus DE, Soba P, Winklhofer KF, Janovjak H. PLoS Genet 17 e1009479 (2021)
  19. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Bannister S, Böhm E, Zinn T, Hellweg T, Kottke T. Struct Dyn 6 034701 (2019)
  20. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Tsuji A, Yamashita H, Hisatomi O, Abe M. Sci Rep 12 12903 (2022)
  21. Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Yee EF, Oldemeyer S, Böhm E, Ganguly A, York DM, Kottke T, Crane BR. Biochemistry 60 1148-1164 (2021)
  22. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper. Nakatani Y, Hisatomi O. Biophys Physicobiol 15 8-17 (2018)
  23. Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE. Trozzi F, Wang F, Verkhivker G, Zoltowski BD, Tao P. PLoS Comput Biol 17 e1009168 (2021)
  24. Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Hutchin A, Cordery C, Walsh MA, Webb JS, Tews I. Microbiol Spectr 9 e0102621 (2021)
  25. Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1. Nakajima H, Kobayashi I, Adachi Y, Hisatomi O. Sci Rep 11 11995 (2021)
  26. Light at the End of the Protein: Crystal Structure of a C-Terminal Light-Sensing Domain. Janovjak H. Structure 24 213-215 (2016)
  27. Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior. Jerng HH, Patel JM, Khan TA, Arenkiel BR, Pfaffinger PJ. PLoS One 16 e0248688 (2021)