3tx7 Citations

Structural basis of coactivation of liver receptor homolog-1 by β-catenin.

Proc Natl Acad Sci U S A 109 143-8 (2012)
Cited: 42 times
EuropePMC logo PMID: 22187462

Abstract

We report the three-dimensional structure of a β-catenin armadillo repeat in complex with the liver receptor homolog-1 (LRH-1) ligand binding domain at 2.8 Å resolution as the first structure of β-catenin in complex with any nuclear receptor. The surface of β-catenin that binds LRH-1 partly overlaps defined contact sites for peptide segments of β-catenin partners, including T-cell factor-4. The surface of LRH-1 that engages β-catenin is comprised of helices 1, 9, and 10 and is distinct from known interaction surfaces of LRH-1, including corepressor and coactivator binding sites. Targeted mutagenesis of amino acids forming both sides of the LRH-1/β-catenin interface reveals that they are essential for stable interactions between these proteins in solution. The LRH-1 binding site in β-catenin is also required for association with androgen receptor, providing evidence that the observed LRH-1/β-catenin interaction may be prototypic.

Articles - 3tx7 mentioned but not cited (8)

  1. Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Peng F, Xu J, Cui B, Liang Q, Zeng S, He B, Zou H, Li M, Zhao H, Meng Y, Chen J, Liu B, Lv S, Chu P, An F, Wang Z, Huang J, Zhan Y, Liao Y, Lu J, Xu L, Zhang J, Sun Z, Li Z, Wang F, Lam EW, Liu Q. Cell Res 31 345-361 (2021)
  2. Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Yumoto F, Nguyen P, Sablin EP, Baxter JD, Webb P, Fletterick RJ. Proc Natl Acad Sci U S A 109 143-148 (2012)
  3. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. World J Stem Cells 8 384-395 (2016)
  4. The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling. Storer Samaniego C, Suh JH, Chattopadhyay A, Olivares K, Guy N, Sivils JC, Dey P, Yumoto F, Fletterick RJ, Strom AM, Gustafsson JÅ, Webb P, Cox MB. PLoS One 10 e0134015 (2015)
  5. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods. Wong YH, Lin CL, Chen TS, Chen CA, Jiang PS, Lai YH, Chu L, Li CW, Chen JJ, Chen BS. BMC Med Genomics 8 Suppl 4 S4 (2015)
  6. PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking. Xu X, Zou X. J Comput Chem 41 362-369 (2020)
  7. Network pharmacology and RNA sequencing studies on triterpenoid saponins from Bupleurum chinense for the treatment of breast cancer. Li D, Liu D, Yue D, Gao P, Du C, Liu X, Zhang L. RSC Adv 9 41088-41098 (2019)
  8. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)


Reviews citing this publication (14)

  1. Wnt/β-catenin signalling in prostate cancer. Kypta RM, Waxman J. Nat Rev Urol 9 418-428 (2012)
  2. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Schneider JA, Logan SK. Mol Cell Endocrinol 462 3-8 (2018)
  3. Molecular basis for the regulation of the nuclear receptor LRH-1. Stein S, Schoonjans K. Curr Opin Cell Biol 33 26-34 (2015)
  4. Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Turton KL, Meier-Stephenson V, Badmalia MD, Coffin CS, Patel TR. Viruses 12 E160 (2020)
  5. Advances in our structural understanding of orphan nuclear receptors. Gallastegui N, Mackinnon JA, Fletterick RJ, Estébanez-Perpiñá E. Trends Biochem Sci 40 25-35 (2015)
  6. The WNT/β-catenin dependent transcription: A tissue-specific business. Söderholm S, Cantù C. WIREs Mech Dis 13 e1511 (2021)
  7. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Wang Z, Li Z, Ji H. Med Res Rev 41 2109-2129 (2021)
  8. Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Khurana N, Sikka SC. Int J Mol Sci 20 E2066 (2019)
  9. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Front Immunol 10 1070 (2019)
  10. Mechanisms of RAS/β-catenin interactions. Zeller E, Hammer K, Kirschnick M, Braeuning A. Arch Toxicol 87 611-632 (2013)
  11. Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Lee KC, Wong WK, Feng B. Biomedicines 1 49-78 (2013)
  12. NR5A2 discovering compounds that block tumor growth in PDAC. Fletterick R. J Surg Oncol 116 89-93 (2017)
  13. Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases. Sandhu N, Rana S, Meena K. Mol Biol Rep 48 8155-8170 (2021)
  14. International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023. Burris TP, de Vera IMS, Cote I, Flaveny CA, Wanninayake US, Chatterjee A, Walker JK, Steinauer N, Zhang J, Coons LA, Korach KS, Cain DW, Hollenberg AN, Webb P, Forrest D, Jetten AM, Edwards DP, Grimm SL, Hartig S, Lange CA, Richer JK, Sartorius CA, Tetel M, Billon C, Elgendy B, Hegazy L, Griffett K, Peinetti N, Burnstein KL, Hughes TS, Sitaula S, Stayrook KR, Culver A, Murray MH, Finck BN, Cidlowski JA. Pharmacol Rev 75 1233-1318 (2023)

Articles citing this publication (20)

  1. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Lee E, Madar A, David G, Garabedian MJ, Dasgupta R, Logan SK. Proc Natl Acad Sci U S A 110 15710-15715 (2013)
  2. Structure-based discovery of antagonists of nuclear receptor LRH-1. Benod C, Carlsson J, Uthayaruban R, Hwang P, Irwin JJ, Doak AK, Shoichet BK, Sablin EP, Fletterick RJ. J Biol Chem 288 19830-19844 (2013)
  3. Activating CAR and β-catenin induces uncontrolled liver growth and tumorigenesis. Dong B, Lee JS, Park YY, Yang F, Xu G, Huang W, Finegold MJ, Moore DD. Nat Commun 6 5944 (2015)
  4. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, Klein OD, Moore DD, Ingraham HA. Nat Commun 9 4055 (2018)
  5. Silencing LRH-1 in colon cancer cell lines impairs proliferation and alters gene expression programs. Bayrer JR, Mukkamala S, Sablin EP, Webb P, Fletterick RJ. Proc Natl Acad Sci U S A 112 2467-2472 (2015)
  6. Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells. Lee E, Ha S, Logan SK. PLoS One 10 e0141589 (2015)
  7. Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Grosdidier S, Carbó LR, Buzón V, Brooke G, Nguyen P, Baxter JD, Bevan C, Webb P, Estébanez-Perpiñá E, Fernández-Recio J. Mol Endocrinol 26 1078-1090 (2012)
  8. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket. Sablin EP, Blind RD, Uthayaruban R, Chiu HJ, Deacon AM, Das D, Ingraham HA, Fletterick RJ. J Struct Biol 192 342-348 (2015)
  9. Antiproliferation activity of a small molecule repressor of liver receptor homolog 1. Corzo CA, Mari Y, Chang MR, Khan T, Kuruvilla D, Nuhant P, Kumar N, West GM, Duckett DR, Roush WR, Griffin PR. Mol Pharmacol 87 296-304 (2015)
  10. Direct targeting of β-catenin: Inhibition of protein-protein interactions for the inactivation of Wnt signaling. Hahne G, Grossmann TN. Bioorg Med Chem 21 4020-4026 (2013)
  11. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells. Matulis CK, Mayo KE. Mol Endocrinol 26 1278-1290 (2012)
  12. The Orphan Nuclear Receptor Liver Homolog Receptor-1 (Nr5a2) Regulates Ovarian Granulosa Cell Proliferation. Meinsohn MC, Morin F, Bertolin K, Duggavathi R, Schoonjans K, Murphy BD. J Endocr Soc 2 24-41 (2018)
  13. HIV's Nef interacts with β-catenin of the Wnt signaling pathway in HEK293 cells. Weiser K, Barton M, Gershoony D, Dasgupta R, Cardozo T. PLoS One 8 e77865 (2013)
  14. Liver receptor homologue-1 expression in ovarian epithelial and granulosa cell tumours. Chand AL, Pathirage N, Lazarus K, Chu S, Drummond AE, Fuller PJ, Clyne CD. Steroids 78 700-706 (2013)
  15. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. Bodofsky S, Koitz F, Wightman B. Nucl Receptor Res 4 101305 (2017)
  16. Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Uellendahl-Werth F, Maj C, Borisov O, Juzenas S, Wacker EM, Jørgensen IF, Steiert TA, Bej S, Krawitz P, Hoffmann P, Schramm C, Wolkenhauer O, Banasik K, Brunak S, Schreiber S, Karlsen TH, Degenhardt F, Nöthen M, Franke A, Folseraas T, Ellinghaus D. Commun Biol 5 80 (2022)
  17. Integrated Structural Modeling of Full-Length LRH-1 Reveals Inter-domain Interactions Contribute to Receptor Structure and Function. Seacrist CD, Kuenze G, Hoffmann RM, Moeller BE, Burke JE, Meiler J, Blind RD. Structure 28 830-846.e9 (2020)
  18. Similarities and Distinctions in Actions of Surface-Directed and Classic Androgen Receptor Antagonists. Suh JH, Chattopadhyay A, Sieglaff DH, Storer Samaniego C, Cox MB, Webb P. PLoS One 10 e0137103 (2015)
  19. Differential Modulation of Nuclear Receptor LRH-1 through Targeting Buried and Surface Regions of the Binding Pocket. Cato ML, Cornelison JL, Spurlin RM, Courouble VV, Patel AB, Flynn AR, Johnson AM, Okafor CD, Frank F, D'Agostino EH, Griffin PR, Jui NT, Ortlund EA. J Med Chem 65 6888-6902 (2022)
  20. Heterogeneous phenotypes of Pten-null hepatocellular carcinoma in hepatitis B virus transgenic mice parallels liver lobule zonal gene expression patterns. Oropeza CE, Ondracek CR, Tarnow G, Maienschein-Cline M, Green SJ, McLachlan A. Virology 566 16-25 (2022)