3twu Citations

Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease.

Cell 147 1340-54 (2011)
Related entries: 3twq, 3twr, 3tws, 3twt, 3twv, 3tww, 3twx

Cited: 142 times
EuropePMC logo PMID: 22153077

Abstract

The poly(ADP-ribose)polymerases Tankyrase 1/2 (TNKS/TNKS2) catalyze the covalent linkage of ADP-ribose polymer chains onto target proteins, regulating their ubiquitylation, stability, and function. Dysregulation of substrate recognition by Tankyrases underlies the human disease cherubism. Tankyrases recruit specific motifs (often called RxxPDG "hexapeptides") in their substrates via an N-terminal region of ankyrin repeats. These ankyrin repeats form five domains termed ankyrin repeat clusters (ARCs), each predicted to bind substrate. Here we report crystal structures of a representative ARC of TNKS2 bound to targeting peptides from six substrates. Using a solution-based peptide library screen, we derive a rule-based consensus for Tankyrase substrates common to four functionally conserved ARCs. This 8-residue consensus allows us to rationalize all known Tankyrase substrates and explains the basis for cherubism-causing mutations in the Tankyrase substrate 3BP2. Structural and sequence information allows us to also predict and validate other Tankyrase targets, including Disc1, Striatin, Fat4, RAD54, BCR, and MERIT40.

Articles - 3twu mentioned but not cited (3)

  1. Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase. Xu W, Lau YH, Fischer G, Tan YS, Chattopadhyay A, de la Roche M, Hyvönen M, Verma C, Spring DR, Itzhaki LS. J. Am. Chem. Soc. 139 2245-2256 (2017)
  2. Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach. Pollock K, Ranes M, Collins I, Guettler S. Methods Mol. Biol. 1608 445-473 (2017)
  3. Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation. Kim S, Han S, Kim Y, Kim HS, Gu YR, Kang D, Cho Y, Kim H, Lee J, Seo Y, Chang MJ, Chang CB, Kang SB, Kim JH. Nat Commun 10 4898 (2019)


Reviews citing this publication (46)

  1. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Gibson BA, Kraus WL. Nat. Rev. Mol. Cell Biol. 13 411-424 (2012)
  2. Classification of intrinsically disordered regions and proteins. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM. Chem. Rev. 114 6589-6631 (2014)
  3. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Luo X, Kraus WL. Genes Dev. 26 417-432 (2012)
  4. A million peptide motifs for the molecular biologist. Tompa P, Davey NE, Gibson TJ, Babu MM. Mol. Cell 55 161-169 (2014)
  5. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Riffell JL, Lord CJ, Ashworth A. Nat Rev Drug Discov 11 923-936 (2012)
  6. Wnt/beta-catenin signaling and small molecule inhibitors. Voronkov A, Krauss S. Curr. Pharm. Des. 19 634-664 (2013)
  7. Structural Implications for Selective Targeting of PARPs. Steffen JD, Brody JR, Armen RS, Pascal JM. Front Oncol 3 301 (2013)
  8. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Barkauskaite E, Jankevicius G, Ahel I. Mol. Cell 58 935-946 (2015)
  9. Tankyrases as drug targets. Lehtiö L, Chi NW, Krauss S. FEBS J. 280 3576-3593 (2013)
  10. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagné JP. Mol. Aspects Med. 34 1066-1087 (2013)
  11. Readers of poly(ADP-ribose): designed to be fit for purpose. Teloni F, Altmeyer M. Nucleic Acids Res. 44 993-1006 (2016)
  12. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Eisemann T, Pascal JM. Cell Mol Life Sci 77 19-33 (2020)
  13. Targeting Wnt pathways in disease. Zimmerman ZF, Moon RT, Chien AJ. Cold Spring Harb Perspect Biol 4 (2012)
  14. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T, Krauss S, Lehtio L. Curr. Pharm. Des. 20 6472-6488 (2014)
  15. Functions of PARylation in DNA Damage Repair Pathways. Wei H, Yu X. Genomics Proteomics Bioinformatics 14 131-139 (2016)
  16. Autoinflammatory bone disorders. Morbach H, Hedrich CM, Beer M, Girschick HJ. Clin. Immunol. 147 185-196 (2013)
  17. New directions in poly(ADP-ribose) polymerase biology. Bock FJ, Chang P. FEBS J. 283 4017-4031 (2016)
  18. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases. Vittal V, Stewart MD, Brzovic PS, Klevit RE. J. Biol. Chem. 290 21244-21251 (2015)
  19. Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Welsby I, Hutin D, Leo O. Biochem. Pharmacol. 84 11-20 (2012)
  20. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol. Aspects Med. 34 1088-1108 (2013)
  21. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit. Rev. Biochem. Mol. Biol. 53 64-82 (2018)
  22. Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Martin-Hernandez K, Rodriguez-Vargas JM, Schreiber V, Dantzer F. Semin. Cell Dev. Biol. 63 92-101 (2017)
  23. Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions. Rezsohazy R. Dev. Dyn. 243 117-131 (2014)
  24. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Mariotti L, Pollock K, Guettler S. Br. J. Pharmacol. 174 4611-4636 (2017)
  25. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. Zhang Y, Zeng L. Plant Commun 1 100041 (2020)
  26. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Langelier MF, Eisemann T, Riccio AA, Pascal JM. Curr. Opin. Struct. Biol. 53 187-198 (2018)
  27. Nuclear PARPs and genome integrity. Azarm K, Smith S. Genes Dev 34 285-301 (2020)
  28. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Huang D, Kraus WL. Mol Cell 82 2315-2334 (2022)
  29. History and progression of Fat cadherins in health and disease. Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q, Cai X. Onco Targets Ther 9 7337-7343 (2016)
  30. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. Zamudio-Martinez E, Herrera-Campos AB, Muñoz A, Rodríguez-Vargas JM, Oliver FJ. J Exp Clin Cancer Res 40 144 (2021)
  31. PARPs in genome stability and signal transduction: implications for cancer therapy. Palazzo L, Ahel I. Biochem. Soc. Trans. 46 1681-1695 (2018)
  32. Poly(ADP-ribose)-dependent ubiquitination and its clinical implications. Vivelo CA, Ayyappan V, Leung AKL. Biochem Pharmacol 167 3-12 (2019)
  33. Targeting Tankyrase to Fight WNT-dependent Tumours. Thorvaldsen TE. Basic Clin. Pharmacol. Toxicol. 121 81-88 (2017)
  34. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Poltronieri P, Miwa M, Masutani M. Int J Mol Sci 22 10829 (2021)
  35. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Lei T, Du S, Peng Z, Chen L. Int J Mol Med 50 90 (2022)
  36. Novel insight into the function of tankyrase. Kim MK. Oncol Lett 16 6895-6902 (2018)
  37. Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Mukai T, Fujita S, Morita Y. Cells 8 (2019)
  38. Targeting ADP-ribosylation as an antimicrobial strategy. Catara G, Corteggio A, Valente C, Grimaldi G, Palazzo L. Biochem Pharmacol 167 13-26 (2019)
  39. ADP-Ribosylation in Antiviral Innate Immune Response. Du Q, Miao Y, He W, Zheng H. Pathogens 12 303 (2023)
  40. ADP-ribosylation from molecular mechanisms to therapeutic implications. Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. Cell 186 4475-4495 (2023)
  41. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin Signaling. Rabl J. Biomolecules 10 (2020)
  42. E3-ubiquitin ligases and recent progress in osteoimmunology. Asano Y, Matsumoto Y, Wada J, Rottapel R. Front Immunol 14 1120710 (2023)
  43. Functional roles of ADP-ribosylation writers, readers and erasers. Li P, Lei Y, Qi J, Liu W, Yao K. Front Cell Dev Biol 10 941356 (2022)
  44. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Muoio D, Laspata N, Fouquerel E. Cell Mol Life Sci 79 215 (2022)
  45. Role of APD-Ribosylation in Bone Health and Disease. Wang C, Mbalaviele G. Cells 8 (2019)
  46. TBM Hunter: Identify and Score Canonical, Extended, and Unconventional Tankyrase-Binding Motifs in Any Protein. Clements CM, Shellman SX, Shellman MH, Shellman YG. Int J Mol Sci 24 16964 (2023)

Articles citing this publication (93)

  1. The Promise of Proteomics for the Study of ADP-Ribosylation. Daniels CM, Ong SE, Leung AK. Mol. Cell 58 911-924 (2015)
  2. Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. Bao R, Christova T, Song S, Angers S, Yan X, Attisano L. PLoS ONE 7 e48670 (2012)
  3. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W. Nature 517 223-226 (2015)
  4. Proteasome regulation by ADP-ribosylation. Cho-Park PF, Steller H. Cell 153 614-627 (2013)
  5. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA, Pascal JM, Neuhaus D. Mol. Cell 60 742-754 (2015)
  6. PepSite: prediction of peptide-binding sites from protein surfaces. Trabuco LG, Lise S, Petsalaki E, Russell RB, Russell RB. Nucleic Acids Res. 40 W423-7 (2012)
  7. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Wang W, Li N, Li X, Tran MK, Han X, Chen J. Cell Rep 13 524-532 (2015)
  8. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schüler H, Lüscher B. Structure 21 462-475 (2013)
  9. Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E, Kleine H, Lüscher B. Nat Commun 4 1683 (2013)
  10. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Lüscher B. Cell Commun. Signal 11 5 (2013)
  11. Tankyrase 1 regulates centrosome function by controlling CPAP stability. Kim MK, Dudognon C, Smith S. EMBO Rep. 13 724-732 (2012)
  12. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Liu CH, Zhou L, Chen G, Krug RM. Proc. Natl. Acad. Sci. U.S.A. 112 14048-14053 (2015)
  13. Anti-tumor necrosis factor treatment in cherubism--clinical, radiological and histological findings in two children. Hero M, Suomalainen A, Hagström J, Stoor P, Kontio R, Alapulli H, Arte S, Toiviainen-Salo S, Lahdenne P, Mäkitie O. Bone 52 347-353 (2013)
  14. Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Kulak O, Chen H, Holohan B, Wu X, He H, Borek D, Otwinowski Z, Yamaguchi K, Garofalo LA, Ma Z, Wright W, Chen C, Shay JW, Zhang X, Lum L. Mol. Cell. Biol. 35 2425-2435 (2015)
  15. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. Li X, Thompson D, Kumar B, DeMartino GN. J. Biol. Chem. 289 17392-17405 (2014)
  16. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J. Sci Signal 5 ra39 (2012)
  17. Wnt pathway activation by ADP-ribosylation. Yang E, Tacchelly-Benites O, Wang Z, Randall MP, Tian A, Benchabane H, Freemantle S, Pikielny C, Tolwinski NS, Lee E, Ahmed Y. Nat Commun 7 11430 (2016)
  18. Identification of a Novel Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-Acyltransferases. Lemonidis K, Sanchez-Perez MC, Chamberlain LH. J. Biol. Chem. 290 21939-21950 (2015)
  19. Large-scale preparation and characterization of poly(ADP-ribose) and defined length polymers. Tan ES, Krukenberg KA, Mitchison TJ. Anal. Biochem. 428 126-136 (2012)
  20. Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. Haikarainen T, Venkannagari H, Narwal M, Obaji E, Lee HW, Nkizinkiko Y, Lehtiö L. PLoS ONE 8 e65404 (2013)
  21. Tankyrase Inhibitor Sensitizes Lung Cancer Cells to Endothelial Growth Factor Receptor (EGFR) Inhibition via Stabilizing Angiomotins and Inhibiting YAP Signaling. Wang H, Lu B, Castillo J, Zhang Y, Yang Z, McAllister G, Lindeman A, Reece-Hoyes J, Tallarico J, Russ C, Hoffman G, Xu W, Schirle M, Cong F. J. Biol. Chem. 291 15256-15266 (2016)
  22. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. Nagy Z, Kalousi A, Furst A, Koch M, Fischer B, Soutoglou E. PLoS Genet. 12 e1005791 (2016)
  23. iELM--a web server to explore short linear motif-mediated interactions. Weatheritt RJ, Jehl P, Dinkel H, Gibson TJ. Nucleic Acids Res. 40 W364-9 (2012)
  24. Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Yoshitaka T, Mukai T, Kittaka M, Alford LM, Masrani S, Ishida S, Yamaguchi K, Yamada M, Mizuno N, Olsen BR, Reichenberger EJ, Ueki Y. Cell Rep 8 1752-1766 (2014)
  25. GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Bisht KK, Dudognon C, Chang WG, Sokol ES, Ramirez A, Smith S. Mol. Cell. Biol. 32 3044-3053 (2012)
  26. Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-α-induced inflammation and bone loss. Yoshitaka T, Ishida S, Mukai T, Kittaka M, Reichenberger EJ, Ueki Y. J. Bone Miner. Res. 29 1170-1182 (2014)
  27. SH3BP2 cherubism mutation potentiates TNF-α-induced osteoclastogenesis via NFATc1 and TNF-α-mediated inflammatory bone loss. Mukai T, Ishida S, Ishikawa R, Yoshitaka T, Kittaka M, Gallant R, Lin YL, Rottapel R, Brotto M, Reichenberger EJ, Ueki Y. J. Bone Miner. Res. 29 2618-2635 (2014)
  28. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling. Mariotti L, Templeton CM, Ranes M, Paracuellos P, Cronin N, Beuron F, Morris E, Guettler S. Mol. Cell 63 498-513 (2016)
  29. The adaptor 3BP2 is required for early and late events in FcεRI signaling in human mast cells. Ainsua-Enrich E, Alvarez-Errico D, Gilfillan AM, Picado C, Sayós J, Rivera J, Martín M. J. Immunol. 189 2727-2734 (2012)
  30. Angiomotin stabilization by tankyrase inhibitors antagonizes constitutive TEAD-dependent transcription and proliferation of human tumor cells with Hippo pathway core component mutations. Troilo A, Benson EK, Esposito D, Garibsingh RA, Reddy EP, Mungamuri SK, Aaronson SA. Oncotarget 7 28765-28782 (2016)
  31. MERIT40 Is an Akt Substrate that Promotes Resolution of DNA Damage Induced by Chemotherapy. Brown KK, Montaser-Kouhsari L, Beck AH, Toker A. Cell Rep 11 1358-1366 (2015)
  32. Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. Turner TN, Douville C, Kim D, Stenson PD, Cooper DN, Chakravarti A, Karchin R. Hum. Mol. Genet. 24 5995-6002 (2015)
  33. para-Substituted 2-phenyl-3,4-dihydroquinazolin-4-ones as potent and selective tankyrase inhibitors. Haikarainen T, Koivunen J, Narwal M, Venkannagari H, Obaji E, Joensuu P, Pihlajaniemi T, Lehtiö L. ChemMedChem 8 1978-1985 (2013)
  34. Characterization of a Norwegian cherubism cohort; molecular genetic findings, oral manifestations and quality of life. Prescott T, Redfors M, Rustad CF, Eiklid KL, Geirdal AØ, Storhaug K, Jensen JL. Eur J Med Genet 56 131-137 (2013)
  35. Interaction of tankyrase and peroxiredoxin II is indispensable for the survival of colorectal cancer cells. Kang DH, Lee DJ, Lee S, Lee SY, Jun Y, Kim Y, Kim Y, Lee JS, Lee DK, Lee S, Jho EH, Yu DY, Kang SW. Nat Commun 8 40 (2017)
  36. Cell cycle-regulated ubiquitination of tankyrase 1 by RNF8 and ABRO1/BRCC36 controls the timing of sister telomere resolution. Tripathi E, Smith S. EMBO J. 36 503-519 (2017)
  37. SH3BP2 gain-of-function mutation exacerbates inflammation and bone loss in a murine collagen-induced arthritis model. Mukai T, Gallant R, Ishida S, Yoshitaka T, Kittaka M, Nishida K, Fox DA, Morita Y, Ueki Y. PLoS ONE 9 e105518 (2014)
  38. Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. Lupo B, Vialard J, Sassi F, Angibaud P, Puliafito A, Pupo E, Lanzetti L, Comoglio PM, Bertotti A, Trusolino L. BMC Biol. 14 5 (2016)
  39. The PARsylation activity of tankyrase in adipose tissue modulates systemic glucose metabolism in mice. Zhong L, Ding Y, Bandyopadhyay G, Waaler J, Börgeson E, Smith S, Zhang M, Phillips SA, Mahooti S, Mahata SK, Shao J, Krauss S, Chi NW. Diabetologia 59 582-591 (2016)
  40. USP25 regulates Wnt signaling by controlling the stability of tankyrases. Xu D, Liu J, Fu T, Shan B, Qian L, Pan L, Yuan J. Genes Dev. 31 1024-1035 (2017)
  41. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Bhardwaj A, Yang Y, Ueberheide B, Smith S. Nat Commun 8 2214 (2017)
  42. Crystal structure of a tankyrase 1-telomere repeat factor 1 complex. Li B, Qiao R, Wang Z, Zhou W, Li X, Xu W, Rao Z. Acta Crystallogr F Struct Biol Commun 72 320-327 (2016)
  43. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions. Kirubakaran P, Kothandan G, Cho SJ, Muthusamy K. Mol Biosyst 10 281-293 (2014)
  44. Discovery of potent and selective nonplanar tankyrase inhibiting nicotinamide mimics. Nkizinkiko Y, Suneel Kumar BV, Jeankumar VU, Haikarainen T, Koivunen J, Madhuri C, Yogeeswari P, Venkannagari H, Obaji E, Pihlajaniemi T, Sriram D, Lehtiö L. Bioorg. Med. Chem. 23 4139-4149 (2015)
  45. Engineering mono- and multi-valent inhibitors on a modular scaffold. Diamante A, Chaturbedy PK, Rowling PJE, Kumita JR, Eapen RS, McLaughlin SH, de la Roche M, Perez-Riba A, Itzhaki LS. Chem Sci 12 880-895 (2021)
  46. Hybrid Structural Analysis of the Arp2/3 Regulator Arpin Identifies Its Acidic Tail as a Primary Binding Epitope. Fetics S, Thureau A, Campanacci V, Aumont-Nicaise M, Dang I, Gautreau A, Pérez J, Cherfils J. Structure 24 252-260 (2016)
  47. Tankyrase loses its grip on SH3BP2 in cherubism. Berendsen AD, Olsen BR. Cell 147 1222-1223 (2011)
  48. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage. Yang L, Sun L, Teng Y, Chen H, Gao Y, Levine AS, Nakajima S, Lan L. Nucleic Acids Res. 45 3906-3921 (2017)
  49. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. Ainsua-Enrich E, Serrano-Candelas E, Álvarez-Errico D, Picado C, Sayós J, Rivera J, Martín M. J. Immunol. 194 4309-4318 (2015)
  50. Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets. Krastev DB, Pettitt SJ, Campbell J, Song F, Tanos BE, Stoynov SS, Ashworth A, Lord CJ. Nat Commun 9 2016 (2018)
  51. Sighting of tankyrase inhibitors by structure- and ligand-based screening and in vitro approach. Kirubakaran P, Arunkumar P, Premkumar K, Muthusamy K. Mol Biosyst 10 2699-2712 (2014)
  52. Striatin is a novel modulator of cell adhesion. Lahav-Ariel L, Caspi M, Nadar-Ponniah PT, Zelikson N, Hofmann I, Hanson KK, Franke WW, Sklan EH, Avraham KB, Rosin-Arbesfeld R. FASEB J 33 4729-4740 (2019)
  53. Tankyrase inhibition aggravates kidney injury in the absence of CD2AP. Kuusela S, Wang H, Wasik AA, Suleiman H, Lehtonen S. Cell Death Dis 7 e2302 (2016)
  54. Mapping methylation quantitative trait loci in cardiac tissues nominates risk loci and biological pathways in congenital heart disease. Li M, Lyu C, Huang M, Do C, Tycko B, Lupo PJ, MacLeod SL, Randolph CE, Liu N, Witte JS, Hobbs CA. BMC Genom Data 22 20 (2021)
  55. Nudix Hydrolase NUDT16 Regulates 53BP1 Protein by Reversing 53BP1 ADP-Ribosylation. Zhang F, Lou L, Peng B, Song X, Reizes O, Almasan A, Gong Z. Cancer Res 80 999-1010 (2020)
  56. RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Mizutani A, Yashiroda Y, Muramatsu Y, Yoshida H, Chikada T, Tsumura T, Okue M, Shirai F, Fukami T, Yoshida M, Seimiya H. Cancer Sci. 109 4003-4014 (2018)
  57. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells. Chihara K, Kato Y, Yoshiki H, Takeuchi K, Fujieda S, Sada K. Sci Rep 7 11480 (2017)
  58. Tankyrase regulates epithelial lumen formation via suppression of Rab11 GEFs. Chandrakumar AA, Coyaud É, Marshall CB, Ikura M, Raught B, Rottapel R. J Cell Biol 220 e202008037 (2021)
  59. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins JM, Ahel D, Sanyal S, Neuhaus D, Ahel I. Nucleic Acids Res 51 8217-8236 (2023)
  60. AMOT suppresses tumor progression via regulating DNA damage response signaling in diffuse large B-cell lymphoma. Sang T, Yang J, Liu J, Han Y, Li Y, Zhou X, Wang X. Cancer Gene Ther 28 1125-1135 (2021)
  61. Arpin Regulates Migration Persistence by Interacting with Both Tankyrases and the Arp2/3 Complex. Simanov G, Dang I, Fokin AI, Oguievetskaia K, Campanacci V, Cherfils J, Gautreau AM. Int J Mol Sci 22 4115 (2021)
  62. Discovery of a Novel Triazolopyridine Derivative as a Tankyrase Inhibitor. Ryu H, Nam KY, Kim HJ, Song JY, Hwang SG, Kim JS, Kim J, Ahn J. Int J Mol Sci 22 7330 (2021)
  63. First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells. Vilchez Larrea S, Valsecchi WM, Fernández Villamil SH, Lafon Hughes LI. PeerJ 9 e11442 (2021)
  64. Poly(ADP-ribosylation) is present in murine sciatic nerve fibers and is altered in a Charcot-Marie-Tooth-1E neurodegenerative model. Lafon Hughes LI, Romeo Cardeillac CJ, Cal Castillo KB, Vilchez Larrea SC, Sotelo Sosa JR, Folle Ungo GA, Fernández Villamil SH, Kun González AE. PeerJ 5 e3318 (2017)
  65. Rescue of a cherubism bone marrow stromal culture phenotype by reducing TGFβ signaling. Liu Y, Sharma T, Chen IP, Reichenberger E, Ueki Y, Arif Y, Parisi D, Maye P. Bone 111 28-35 (2018)
  66. Structural basis for tankyrase-RNF146 interaction reveals noncanonical tankyrase-binding motifs. DaRosa PA, Klevit RE, Xu W. Protein Sci. 27 1057-1067 (2018)
  67. Testing the length limit of loop grafting in a helical repeat protein. Ripka JF, Perez-Riba A, Chaturbedy PK, Itzhaki LS. Curr Res Struct Biol 3 30-40 (2021)
  68. A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases. Sowa ST, Vela-Rodríguez C, Galera-Prat A, Cázares-Olivera M, Prunskaite-Hyyryläinen R, Ignatev A, Lehtiö L. Sci Rep 10 12357 (2020)
  69. ADP-ribosylation signalling and human disease. Palazzo L, Mikolčević P, Mikoč A, Ahel I. Open Biol 9 190041 (2019)
  70. ATLIGATOR: editing protein interactions with an atlas-based approach. Kynast JP, Schwägerl F, Höcker B. Bioinformatics 38 5199-5205 (2022)
  71. An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases. Sowa ST, Bosetti C, Galera-Prat A, Johnson MS, Lehtiö L. Biomolecules 12 1688 (2022)
  72. Autologous K63 deubiquitylation within the BRCA1-A complex licenses DNA damage recognition. Jiang Q, Foglizzo M, Morozov YI, Yang X, Datta A, Tian L, Thada V, Li W, Zeqiraj E, Greenberg RA. J Cell Biol 221 e202111050 (2022)
  73. DNA methylation profile discriminates sporadic giant cell granulomas of the jaws and cherubism from their giant cell-rich histological mimics. Guimarães LM, Baumhoer D, Andrei V, Friedel D, Koelsche C, Gomez RS, von Deimling A, Gomes CC. J Pathol Clin Res 9 464-474 (2023)
  74. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Sci Rep 9 19130 (2019)
  75. Investigating global gene expression changes in a murine model of cherubism. Sharma T, Cotney J, Singh V, Sanjay A, Reichenberger EJ, Ueki Y, Maye P. Bone 135 115315 (2020)
  76. MERIT40-dependent recruitment of tankyrase to damaged DNA and its implication for cell sensitivity to DNA-damaging anticancer drugs. Okamoto K, Ohishi T, Kuroiwa M, Iemura SI, Natsume T, Seimiya H. Oncotarget 9 35844-35855 (2018)
  77. Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Walden M, Tian L, Ross RL, Sykora UM, Byrne DP, Hesketh EL, Masandi SK, Cassel J, George R, Ault JR, El Oualid F, Pawłowski K, Salvino JM, Eyers PA, Ranson NA, Del Galdo F, Greenberg RA, Zeqiraj E. Nature 570 194-199 (2019)
  78. Multiple E3 ligases control tankyrase stability and function. Perrard J, Smith S. Nat Commun 14 7208 (2023)
  79. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. Lemonidis K, MacLeod R, Baillie GS, Chamberlain LH. J. Biol. Chem. 292 17190-17202 (2017)
  80. Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation. Nie L, Wang C, Li N, Feng X, Lee N, Su D, Tang M, Yao F, Chen J. Mol Cell Proteomics 19 2015-2029 (2020)
  81. RXXPEG motif of MERIT40 is required to maintain spindle structure and function through its interaction with Tankyrase1. Zheng D, Xie W, Li L, Jiang W, Zou Y, Chiang C, Shao G, Yan K. Cell Biol. Int. 43 174-181 (2019)
  82. Regulation of tankyrase activity by a catalytic domain dimer interface. Fan C, Yarravarapu N, Chen H, Kulak O, Dasari P, Herbert J, Yamaguchi K, Lum L, Zhang X. Biochem. Biophys. Res. Commun. 503 1780-1785 (2018)
  83. Second-Generation SYK Inhibitor Entospletinib Ameliorates Fully Established Inflammation and Bone Destruction in the Cherubism Mouse Model. Yoshimoto T, Hayashi T, Kondo T, Kittaka M, Reichenberger EJ, Ueki Y. J. Bone Miner. Res. 33 1513-1519 (2018)
  84. Sjögren syndrome/scleroderma autoantigen 1 is a direct Tankyrase binding partner in cancer cells. Perdreau-Dahl H, Progida C, Barfeld SJ, Guldsten H, Thiede B, Arntzen M, Bakke O, Mills IG, Krauss S, Morth JP. Commun Biol 3 123 (2020)
  85. Solution NMR assignment of the ARC4 domain of human tankyrase 2. Zaleska M, Pollock K, Collins I, Guettler S, Pfuhl M. Biomol NMR Assign 13 255-260 (2019)
  86. Striatin translocates to the cytosol of apoptotic cells and is proteolytically cleaved in a caspase 3-dependent manner. Nader M, Khalil B, Kattuah W, Dzimiri N, Bakheet D. Heliyon 6 e04990 (2020)
  87. Structural and functional analysis of parameters governing tankyrase-1 interaction with telomeric repeat-binding factor 1 and GDP-mannose 4,6-dehydratase. Eisemann T, Langelier MF, Pascal JM. J. Biol. Chem. 294 14574-14590 (2019)
  88. Structural basis of tankyrase activation by polymerization. Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S, Desfosses A, Hopkins PCR, Templeton CM, Beuron F, Morris EP, Guettler S. Nature 612 162-169 (2022)
  89. TDP-43, a protein central to amyotrophic lateral sclerosis, is destabilized by tankyrase-1 and -2. McGurk L, Rifai OM, Bonini NM. J Cell Sci 133 (2020)
  90. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Li N, Wang Y, Neri S, Zhen Y, Fong LWR, Qiao Y, Li X, Chen Z, Stephan C, Deng W, Ye R, Jiang W, Zhang S, Yu Y, Hung MC, Chen J, Lin SH. Nat Commun 10 4363 (2019)
  91. Tankyrases inhibit innate antiviral response by PARylating VISA/MAVS and priming it for RNF146-mediated ubiquitination and degradation. Xu YR, Shi ML, Zhang Y, Kong N, Wang C, Xiao YF, Du SS, Zhu QY, Lei CQ. Proc Natl Acad Sci U S A 119 e2122805119 (2022)
  92. The zinc-binding motif in tankyrases is required for the structural integrity of the catalytic ADP-ribosyltransferase domain. Sowa ST, Lehtiö L. Open Biol 12 210365 (2022)
  93. Tlr2/4-Mediated Hyperinflammation Promotes Cherubism-Like Jawbone Expansion in Sh3bp2 (P416R) Knockin Mice. Fujii Y, Monteiro N, Sah SK, Javaheri H, Ueki Y, Fan Z, Reichenberger EJ, Chen IP. JBMR Plus 6 e10562 (2022)