3t3k Citations

Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex.

Biochemistry 50 7265-74 (2011)
Related entries: 3t3j, 3t3l, 3t3t, 3t3x

Cited: 47 times
EuropePMC logo PMID: 21776984

Abstract

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k(cat)/K(M) higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k(cat)/K(M) of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

Articles - 3t3k mentioned but not cited (5)

  1. Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex. Bridwell-Rabb J, Winn AM, Barondeau DP. Biochemistry 50 7265-7274 (2011)
  2. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. Opron K, Xia K, Wei GW. J Chem Phys 140 234105 (2014)
  3. Trinucleotide repeats: a structural perspective. Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Front Neurol 4 76 (2013)
  4. Blind prediction of protein B-factor and flexibility. Bramer D, Wei GW. J Chem Phys 149 134107 (2018)
  5. Atom-specific persistent homology and its application to protein flexibility analysis. Bramer D, Wei GW. Comput Math Biophys 8 1-35 (2020)


Reviews citing this publication (13)

  1. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Rouault TA. Dis Model Mech 5 155-164 (2012)
  2. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Rouault TA. Nat Rev Mol Cell Biol 16 45-55 (2015)
  3. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Stehling O, Lill R. Cold Spring Harb Perspect Biol 5 a011312 (2013)
  4. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Antioxid Redox Signal 20 1324-1363 (2014)
  5. Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models. Martelli A, Napierala M, Puccio H. Dis Model Mech 5 165-176 (2012)
  6. The Role of Iron in Friedreich's Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models. Llorens JV, Soriano S, Calap-Quintana P, Gonzalez-Cabo P, Moltó MD. Front Neurosci 13 75 (2019)
  7. Molecular base of biochemical complex I deficiency. Hoefs SJ, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Mitochondrion 12 520-532 (2012)
  8. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes. Leimkühler S, Bühning M, Beilschmidt L. Biomolecules 7 E5 (2017)
  9. Management and therapy for cardiomyopathy in Friedreich's ataxia. Lynch DR, Regner SR, Schadt KA, Friedman LS, Lin KY, St John Sutton MG. Expert Rev Cardiovasc Ther 10 767-777 (2012)
  10. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis. Leimkühler S. Biol Chem 398 1009-1026 (2017)
  11. The role of protein structural analysis in the next generation sequencing era. Yue WW, Froese DS, Brennan PE. Top Curr Chem 336 67-98 (2014)
  12. Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer. Zhang M, Liu Z, Le Y, Gu Z, Zhao H. Oxid Med Cell Longev 2022 7449941 (2022)
  13. Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis. Falb N, Patil G, Furtmüller PG, Gabler T, Hofbauer S. Comput Struct Biotechnol J 21 3933-3945 (2023)

Articles citing this publication (29)

  1. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP. Biochemistry 53 4904-4913 (2014)
  2. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model. Shan Y, Schoenfeld RA, Hayashi G, Napoli E, Akiyama T, Iodi Carstens M, Carstens EE, Pook MA, Cortopassi GA. Antioxid Redox Signal 19 1481-1493 (2013)
  3. Compound heterozygous FXN mutations and clinical outcome in friedreich ataxia. Galea CA, Huq A, Lockhart PJ, Tai G, Corben LA, Yiu EM, Gurrin LC, Lynch DR, Gelbard S, Durr A, Pousset F, Parkinson M, Labrum R, Giunti P, Perlman SL, Delatycki MB, Evans-Galea MV. Ann Neurol 79 485-495 (2016)
  4. Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis. Bridwell-Rabb J, Iannuzzi C, Pastore A, Barondeau DP. Biochemistry 51 2506-2514 (2012)
  5. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich's ataxia. Sahdeo S, Scott BD, McMackin MZ, Jasoliya M, Brown B, Wulff H, Perlman SL, Pook MA, Cortopassi GA. Hum Mol Genet 23 6848-6862 (2014)
  6. Frataxin levels in peripheral tissue in Friedreich ataxia. Lazaropoulos M, Dong Y, Clark E, Greeley NR, Seyer LA, Brigatti KW, Christie C, Perlman SL, Wilmot GR, Gomez CM, Mathews KD, Yoon G, Zesiewicz T, Hoyle C, Subramony SH, Brocht AF, Farmer JM, Wilson RB, Deutsch EC, Lynch DR. Ann Clin Transl Neurol 2 831-842 (2015)
  7. Mechanism of activation of the human cysteine desulfurase complex by frataxin. Patra S, Barondeau DP. Proc Natl Acad Sci U S A 116 19421-19430 (2019)
  8. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex. Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP. Biochemistry 54 3880-3889 (2015)
  9. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency. Farhan SM, Wang J, Robinson JF, Lahiry P, Siu VM, Prasad C, Kronick JB, Ramsay DA, Rupar CA, Hegele RA. Mol Genet Genomic Med 2 73-80 (2014)
  10. Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein. Manicki M, Majewska J, Ciesielski S, Schilke B, Blenska A, Kominek J, Marszalek J, Craig EA, Dutkiewicz R. J Biol Chem 289 30268-30278 (2014)
  11. Mitochondrial Cysteine Desulfurase and ISD11 Coexpressed in Escherichia coli Yield Complex Containing Acyl Carrier Protein. Cai K, Frederick RO, Tonelli M, Markley JL. ACS Chem Biol 12 918-921 (2017)
  12. Selected missense mutations impair frataxin processing in Friedreich ataxia. Clark E, Butler JS, Isaacs CJ, Napierala M, Lynch DR. Ann Clin Transl Neurol 4 575-584 (2017)
  13. Missense mutations linked to friedreich ataxia have different but synergistic effects on mitochondrial frataxin isoforms. Li H, Gakh O, Smith DY, Ranatunga WK, Isaya G. J Biol Chem 288 4116-4127 (2013)
  14. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G. J Biol Chem 291 21296-21321 (2016)
  15. Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge. Strokach A, Corbi-Verge C, Kim PM. Hum Mutat 40 1414-1423 (2019)
  16. Protein stability and dynamics modulation: the case of human frataxin. Roman EA, Faraj SE, Gallo M, Salvay AG, Ferreiro DU, Santos J. PLoS One 7 e45743 (2012)
  17. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region. Faraj SE, González-Lebrero RM, Roman EA, Santos J. Sci Rep 6 20782 (2016)
  18. Mechanism of frataxin "bypass" in human iron-sulfur cluster biosynthesis with implications for Friedreich's ataxia. Das D, Patra S, Bridwell-Rabb J, Barondeau DP. J Biol Chem 294 9276-9284 (2019)
  19. The alteration of the C-terminal region of human frataxin distorts its structural dynamics and function. Faraj SE, Roman EA, Aran M, Gallo M, Santos J. FEBS J 281 3397-3419 (2014)
  20. In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency. Huichalaf C, Perfitt TL, Kuperman A, Gooch R, Kovi RC, Brenneman KA, Chen X, Hirenallur-Shanthappa D, Ma T, Assaf BT, Pardo I, Franks T, Monarski L, Cheng TW, Le K, Su C, Somanathan S, Whiteley LO, Bulawa C, Pregel MJ, Martelli A. Mol Ther Methods Clin Dev 24 367-378 (2022)
  21. A dynamic model of the proteins that form the initial iron-sulfur cluster biogenesis machinery in yeast mitochondria. Amela I, Delicado P, Gómez A, Querol E, Cedano J. Protein J 32 183-196 (2013)
  22. Human mitochondrial ferritin improves respiratory function in yeast mutants deficient in iron-sulfur cluster biogenesis, but is not a functional homologue of yeast frataxin. Sutak R, Seguin A, Garcia-Serres R, Oddou JL, Dancis A, Tachezy J, Latour JM, Camadro JM, Lesuisse E. Microbiologyopen 1 95-104 (2012)
  23. SARS-unique fold in the Rousettus bat coronavirus HKU9. Hammond RG, Tan X, Johnson MA. Protein Sci 26 1726-1737 (2017)
  24. A helix-coil transition induced by the metal ion interaction with a grafted iron-binding site of the CyaY protein family. Vazquez DS, Agudelo WA, Yone A, Vizioli N, Arán M, González Flecha FL, González Lebrero MC, Santos J. Dalton Trans 44 2370-2379 (2015)
  25. Biophysical characterisation of the recombinant human frataxin precursor. Castro IH, Ferrari A, Herrera MG, Noguera ME, Maso L, Benini M, Rufini A, Testi R, Costantini P, Santos J. FEBS Open Bio 8 390-405 (2018)
  26. A Highly Conserved Iron-Sulfur Cluster Assembly Machinery between Humans and Amoeba Dictyostelium discoideum: The Characterization of Frataxin. Olmos J, Pignataro MF, Benítez Dos Santos AB, Bringas M, Klinke S, Kamenetzky L, Velazquez F, Santos J. Int J Mol Sci 21 E6821 (2020)
  27. Identification of a novel missense mutation in Friedreich's ataxia -FXNW 168R. Clark E, Strawser C, Schadt K, Lynch DR. Ann Clin Transl Neurol 6 812-816 (2019)
  28. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform. Correia AR, Naik S, Fisher MT, Gomes CM. Biomolecules 4 956-979 (2014)
  29. Towards a metabolomic approach to investigate iron-sulfur cluster biogenesis. Marengo M, Fissore A, Oliaro-Bosso S, Adinolfi S, Pastore A. IUBMB Life 74 715-722 (2022)