3sya Citations

Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium.

Cell 147 199-208 (2011)
Related entries: 3syc, 3syo, 3syp, 3syq

Cited: 295 times
EuropePMC logo PMID: 21962516

Abstract

G protein-gated K(+) channels (Kir3.1-Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K(+) channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP(2) suggest that G proteins open only the G loop gate in the absence of PIP(2), but in the presence of PIP(2) the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na(+) ion-binding site, which would allow intracellular Na(+) to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

Reviews - 3sya mentioned but not cited (10)

  1. Structure of potassium channels. Kuang Q, Purhonen P, Hebert H. Cell Mol Life Sci 72 3677-3693 (2015)
  2. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Dickson EJ, Hille B. Biochem J 476 1-23 (2019)
  3. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK, Cui M, Baki L. Annu Rev Physiol 77 81-104 (2015)
  4. Structural biology of TRP channels. Hellmich UA, Gaudet R. Handb Exp Pharmacol 223 963-990 (2014)
  5. A structural view of ligand-dependent activation in thermoTRP channels. Steinberg X, Lespay-Rebolledo C, Brauchi S. Front Physiol 5 171 (2014)
  6. Cryo-electron microscopy structures and progress toward a dynamic understanding of KATP channels. Puljung MC. J Gen Physiol 150 653-669 (2018)
  7. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Fürst O, Mondou B, D'Avanzo N. Front Physiol 4 404 (2014)
  8. How is the acyl chain composition of phosphoinositides created and does it matter? Barneda D, Cosulich S, Stephens L, Hawkins P. Biochem Soc Trans 47 1291-1305 (2019)
  9. Alcohol modulation of G-protein-gated inwardly rectifying potassium channels: from binding to therapeutics. Bodhinathan K, Slesinger PA. Front Physiol 5 76 (2014)
  10. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Núñez E, Muguruza-Montero A, Villarroel A. Int J Mol Sci 21 E1285 (2020)

Articles - 3sya mentioned but not cited (38)

  1. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Whorton MR, MacKinnon R. Nature 498 190-197 (2013)
  2. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes. Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS. Structure 23 1350-1361 (2015)
  3. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, Shyng SL. Elife 6 e24149 (2017)
  4. Molecular structure of human KATP in complex with ATP and ADP. Lee KPK, Chen J, MacKinnon R. Elife 6 e32481 (2017)
  5. A novel KCNJ5-insT149 somatic mutation close to, but outside, the selectivity filter causes resistant hypertension by loss of selectivity for potassium. Kuppusamy M, Caroccia B, Stindl J, Bandulik S, Lenzini L, Gioco F, Fishman V, Zanotti G, Gomez-Sanchez C, Bader M, Warth R, Rossi GP. J Clin Endocrinol Metab 99 E1765-73 (2014)
  6. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels. Ufret-Vincenty CA, Klein RM, Collins MD, Rosasco MG, Martinez GQ, Gordon SE. J Gen Physiol 145 431-442 (2015)
  7. Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels. Niu Y, Tao X, Touhara KK, MacKinnon R. Elife 9 e60552 (2020)
  8. Dynamic role of the tether helix in PIP2-dependent gating of a G protein-gated potassium channel. Lacin E, Aryal P, Glaaser IW, Bodhinathan K, Tsai E, Marsh N, Tucker SJ, Sansom MSP, Slesinger PA. J Gen Physiol 149 799-811 (2017)
  9. Conduction through a narrow inward-rectifier K+ channel pore. Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. J Gen Physiol 151 1231-1246 (2019)
  10. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. J Biol Chem 294 18934-18948 (2019)
  11. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. Xu Y, Cantwell L, Molosh AI, Plant LD, Gazgalis D, Fitz SD, Dustrude ET, Yang Y, Kawano T, Garai S, Noujaim SF, Shekhar A, Logothetis DE, Thakur GA. J Biol Chem 295 3614-3634 (2020)
  12. Regulation of cardiac ATP-sensitive potassium channel surface expression by calcium/calmodulin-dependent protein kinase II. Sierra A, Zhu Z, Sapay N, Sharotri V, Kline CF, Luczak ED, Subbotina E, Sivaprasadarao A, Snyder PM, Mohler PJ, Anderson ME, Vivaudou M, Zingman LV, Hodgson-Zingman DM. J Biol Chem 288 1568-1581 (2013)
  13. A Critical Gating Switch at a Modulatory Site in Neuronal Kir3 Channels. Adney SK, Ha J, Meng XY, Kawano T, Logothetis DE. J Neurosci 35 14397-14405 (2015)
  14. Identification of a G-Protein-Independent Activator of GIRK Channels. Zhao Y, Ung PM, Zahoránszky-Kőhalmi G, Zakharov AV, Martinez NJ, Simeonov A, Glaaser IW, Rai G, Schlessinger A, Marugan JJ, Slesinger PA. Cell Rep 31 107770 (2020)
  15. Computational and functional analyses of a small-molecule binding site in ROMK. Swale DR, Sheehan JH, Banerjee S, Husni AS, Nguyen TT, Meiler J, Denton JS. Biophys J 108 1094-1103 (2015)
  16. Allosteric modulation of alternatively spliced Ca2+-activated Cl- channels TMEM16A by PI(4,5)P2 and CaMKII. Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC. Proc Natl Acad Sci U S A 117 30787-30798 (2020)
  17. Structural insights into GIRK2 channel modulation by cholesterol and PIP2. Mathiharan YK, Glaaser IW, Zhao Y, Robertson MJ, Skiniotis G, Slesinger PA. Cell Rep 36 109619 (2021)
  18. A Conserved Residue Cluster That Governs Kinetics of ATP-dependent Gating of Kir6.2 Potassium Channels. Zhang RS, Wright JD, Pless SA, Nunez JJ, Kim RY, Li JBW, Yang R, Ahern CA, Kurata HT. J Biol Chem 290 15450-15461 (2015)
  19. Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach. Jagadeb M, Konkimalla VB, Rath SN, Das RP. Genomics Inform 12 283-288 (2014)
  20. A novel small-molecule selective activator of homomeric GIRK4 channels. Cui M, Xu K, Gada KD, Shalomov B, Ban M, Eptaminitaki GC, Kawano T, Plant LD, Dascal N, Logothetis DE. J Biol Chem 298 102009 (2022)
  21. Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K+ Channel. Chen X, Bründl M, Friesacher T, Stary-Weinzinger A. Front Pharmacol 11 721 (2020)
  22. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel. Trezza A, Cicaloni V, Porciatti P, Langella A, Fusi F, Saponara S, Spiga O. PeerJ 6 e4680 (2018)
  23. A molecular switch controls the impact of cholesterol on a Kir channel. Corradi V, Bukiya AN, Miranda WE, Cui M, Plant LD, Logothetis DE, Tieleman DP, Noskov SY, Rosenhouse-Dantsker A. Proc Natl Acad Sci U S A 119 e2109431119 (2022)
  24. Non-sedating antihistamines block G-protein-gated inwardly rectifying K+ channels. Chen IS, Liu C, Tateyama M, Karbat I, Uesugi M, Reuveny E, Kubo Y. Br J Pharmacol 176 3161-3179 (2019)
  25. Computational Identification of Novel Kir6 Channel Inhibitors. Chen X, Garon A, Wieder M, Houtman MJC, Zangerl-Plessl EM, Langer T, van der Heyden MAG, Stary-Weinzinger A. Front Pharmacol 10 549 (2019)
  26. Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel. Fernandes CAH, Zuniga D, Fagnen C, Kugler V, Scala R, Péhau-Arnaudet G, Wagner R, Perahia D, Bendahhou S, Vénien-Bryan C. Sci Adv 8 eabq8489 (2022)
  27. Simulating PIP2-Induced Gating Transitions in Kir6.2 Channels. Bründl M, Pellikan S, Stary-Weinzinger A. Front Mol Biosci 8 711975 (2021)
  28. Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels. Patel D, Kuyucak S, Doupnik CA. Biochemistry 59 836-850 (2020)
  29. A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels. Cui M, Alhamshari Y, Cantwell L, Ei-Haou S, Eptaminitaki GC, Chang M, Abou-Assali O, Tan H, Xu K, Masotti M, Plant LD, Thakur GA, Noujaim SF, Milnes J, Logothetis DE. J Biol Chem 296 100535 (2021)
  30. A selectivity filter mutation provides insights into gating regulation of a K+ channel. Friesacher T, Reddy HP, Bernsteiner H, Carlo Combista J, Shalomov B, Bera AK, Zangerl-Plessl EM, Dascal N, Stary-Weinzinger A. Commun Biol 5 345 (2022)
  31. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details. Rosenhouse-Dantsker A. Lipid Insights 11 1178635317754071 (2018)
  32. Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease. Pipatpolkai T, Corey RA, Proks P, Ashcroft FM, Stansfeld PJ. Commun Chem 3 147 (2020)
  33. Identification of Aethina tumida Kir Channels as Putative Targets of the Bee Venom Peptide Tertiapin Using Structure-Based Virtual Screening Methods. Doupnik CA. Toxins (Basel) 11 E546 (2019)
  34. Oxidation Driven Reversal of PIP2-dependent Gating in GIRK2 Channels. Lee SJ, Maeda S, Gao J, Nichols CG. Function (Oxf) 4 zqad016 (2023)
  35. Bioengineered peptibodies as blockers of ion channels. Chidipi B, Chang M, Cui M, Abou-Assali O, Reiser M, Pshenychnyi S, Logothetis DE, Teng MN, Noujaim SF. Proc Natl Acad Sci U S A 119 e2212564119 (2022)
  36. Research Support, Non-U.S. Gov't De Novo Variant in the KCNJ9 Gene as a Possible Cause of Neonatal Seizures. Kochetkova TO, Maslennikov DN, Tolmacheva ER, Shubina J, Bolshakova AS, Suvorova DI, Degtyareva AV, Orlovskaya IV, Kuznetsova MV, Rachkova AA, Sukhikh GT, Rebrikov DV, Trofimov DY. Genes (Basel) 14 366 (2023)
  37. High-Resolution Structures of K+ Channels. Jiang QX. Handb Exp Pharmacol 267 51-81 (2021)
  38. Multi-ion versus single-ion conduction mechanisms can yield current rectification in biological ion channels. Hilder TA, Corry B, Chung SH. J Biol Phys 40 109-119 (2014)


Reviews citing this publication (61)

  1. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol Rev 93 1019-1137 (2013)
  2. hERG K(+) channels: structure, function, and clinical significance. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. Physiol Rev 92 1393-1478 (2012)
  3. Phosphoinositides regulate ion channels. Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Biochim Biophys Acta 1851 844-856 (2015)
  4. Emerging Diversity in Lipid-Protein Interactions. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Chem Rev 119 5775-5848 (2019)
  5. Novel molecular targets for atrial fibrillation therapy. Dobrev D, Carlsson L, Nattel S. Nat Rev Drug Discov 11 275-291 (2012)
  6. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. Pharmacol Rev 65 545-577 (2013)
  7. How Plants Sense and Respond to Stressful Environments. Lamers J, van der Meer T, Testerink C. Plant Physiol 182 1624-1635 (2020)
  8. New insights into the therapeutic potential of Girk channels. Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K. Trends Neurosci 37 20-29 (2014)
  9. Phosphoinositide regulation of TRP channels. Rohacs T. Handb Exp Pharmacol 223 1143-1176 (2014)
  10. The systematic analysis of protein-lipid interactions comes of age. Saliba AE, Vonkova I, Gavin AC. Nat Rev Mol Cell Biol 16 753-761 (2015)
  11. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Hansen SB. Biochim Biophys Acta 1851 620-628 (2015)
  12. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Zaydman MA, Cui J. Front Physiol 5 195 (2014)
  13. Pichia pastoris as an expression host for membrane protein structural biology. Byrne B. Curr Opin Struct Biol 32 9-17 (2015)
  14. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Tinker A, Aziz Q, Thomas A. Br J Pharmacol 171 12-23 (2014)
  15. Non-covalent binding of membrane lipids to membrane proteins. Yeagle PL. Biochim Biophys Acta 1838 1548-1559 (2014)
  16. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Physiol Rev 95 179-217 (2015)
  17. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. Front Cell Neurosci 8 167 (2014)
  18. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, Del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. J Membr Biol 248 611-640 (2015)
  19. The recombinant expression systems for structure determination of eukaryotic membrane proteins. He Y, Wang K, Yan N. Protein Cell 5 658-672 (2014)
  20. Ionic protein-lipid interaction at the plasma membrane: what can the charge do? Li L, Shi X, Guo X, Li H, Xu C. Trends Biochem Sci 39 130-140 (2014)
  21. Phosphoinositide regulation of TRPV1 revisited. Rohacs T. Pflugers Arch 467 1851-1869 (2015)
  22. Lipids at membrane contact sites: cell signaling and ion transport. Muallem S, Chung WY, Jha A, Ahuja M. EMBO Rep 18 1893-1904 (2017)
  23. Computational modeling of membrane proteins. Koehler Leman J, Ulmschneider MB, Gray JJ. Proteins 83 1-24 (2015)
  24. Inward rectifiers and their regulation by endogenous polyamines. Baronas VA, Kurata HT. Front Physiol 5 325 (2014)
  25. Polyamines and potassium channels: A 25-year romance. Nichols CG, Lee SJ. J Biol Chem 293 18779-18788 (2018)
  26. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. Chen IS, Kubo Y. J Physiol 596 1833-1845 (2018)
  27. Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. Robinson CV, Rohacs T, Hansen SB. Trends Biochem Sci 44 795-806 (2019)
  28. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Gordon D, Chen R, Chung SH. Physiol Rev 93 767-802 (2013)
  29. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Isacoff EY, Jan LY, Minor DL. Neuron 80 658-674 (2013)
  30. 5-HT1A Receptor-Mediated Autoinhibition and the Control of Serotonergic Cell Firing. Andrade R, Huereca D, Lyons JG, Andrade EM, McGregor KM. ACS Chem Neurosci 6 1110-1115 (2015)
  31. Kir3 channel signaling complexes: focus on opioid receptor signaling. Nagi K, Pineyro G. Front Cell Neurosci 8 186 (2014)
  32. Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Taylor KC, Sanders CR. Biochim Biophys Acta Biomembr 1859 586-597 (2017)
  33. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Front Cell Infect Microbiol 9 150 (2019)
  34. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Okamura Y, Kawanabe A, Kawai T. Physiol Rev 98 2097-2131 (2018)
  35. Ion channels as lipid sensors: from structures to mechanisms. Thompson MJ, Baenziger JE. Nat Chem Biol 16 1331-1342 (2020)
  36. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Bernier LP, Ase AR, Séguéla P. Front Cell Neurosci 7 226 (2013)
  37. Regulators of Slc4 bicarbonate transporter activity. Thornell IM, Bevensee MO. Front Physiol 6 166 (2015)
  38. Membrane channels as integrators of G-protein-mediated signaling. Inanobe A, Kurachi Y. Biochim Biophys Acta 1838 521-531 (2014)
  39. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. J Neurophysiol 125 1899-1919 (2021)
  40. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Pemberton JG, Balla T. Adv Exp Med Biol 1111 77-137 (2019)
  41. Venom-derived peptides inhibiting Kir channels: Past, present, and future. Doupnik CA. Neuropharmacology 127 161-172 (2017)
  42. Cross-saturation and transferred cross-saturation experiments. Ueda T, Takeuchi K, Nishida N, Stampoulis P, Kofuku Y, Osawa M, Shimada I. Q Rev Biophys 47 143-187 (2014)
  43. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics. Lockless SW. J Gen Physiol 146 3-13 (2015)
  44. Advances in Targeting GIRK Channels in Disease. Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Trends Pharmacol Sci 42 203-215 (2021)
  45. G protein-coupled receptor signaling to Kir channels in Xenopus oocytes. Hatcher-Solis C, Fribourg M, Spyridaki K, Younkin J, Ellaithy A, Xiang G, Liapakis G, Gonzalez-Maeso J, Zhang H, Cui M, Logothetis DE. Curr Pharm Biotechnol 15 987-995 (2014)
  46. Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Cui M, Cantwell L, Zorn A, Logothetis DE. Handb Exp Pharmacol 267 277-356 (2021)
  47. On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies. Clark L, Dikiy I, Rosenbaum DM, Gardner KH. J Biomol NMR 71 203-211 (2018)
  48. Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function. Welling PA. Curr Opin Nephrol Hypertens 23 1-8 (2014)
  49. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Velarde-Miranda C, Gomez-Sanchez EP, Gomez-Sanchez CE. Clin Exp Pharmacol Physiol 40 895-901 (2013)
  50. Subtype-dependent regulation of Gβγ signalling. Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Cell Signal 82 109947 (2021)
  51. Overexpression of membrane proteins from higher eukaryotes in yeasts. Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Appl Microbiol Biotechnol 98 7671-7698 (2014)
  52. Potassium channels in the sinoatrial node and their role in heart rate control. Aziz Q, Li Y, Tinker A. Channels (Austin) 12 356-366 (2018)
  53. Targeting renal epithelial channels for the control of insect vectors. Beyenbach KW, Yu Y, Piermarini PM, Denton J. Tissue Barriers 3 e1081861 (2015)
  54. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Membranes (Basel) 11 451 (2021)
  55. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Bajaj S, Han J. Front Pharmacol 10 58 (2019)
  56. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Crul T, Maléth J. Int J Mol Sci 22 4703 (2021)
  57. Neuronal G protein-gated K+ channels. Luo H, Marron Fernandez de Velasco E, Wickman K. Am J Physiol Cell Physiol 323 C439-C460 (2022)
  58. PKC regulation of ion channels: The involvement of PIP2. Gada KD, Logothetis DE. J Biol Chem 298 102035 (2022)
  59. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Kleschevnikov AM. Front Genet 13 1006068 (2022)
  60. From Bench to Biomolecular Simulation: Phospholipid Modulation of Potassium Channels. Pipatpolkai T, Quetschlich D, Stansfeld PJ. J Mol Biol 433 167105 (2021)
  61. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P2 on Inwardly Rectifying Potassium Channels. Bukiya AN, Rosenhouse-Dantsker A. Adv Exp Med Biol 1422 169-191 (2023)

Articles citing this publication (186)

  1. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF. Science 337 727-730 (2012)
  2. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Cell 168 101-110.e10 (2017)
  3. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J. Proc Natl Acad Sci U S A 110 13180-13185 (2013)
  4. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Shi X, Bi Y, Yang W, Guo X, Jiang Y, Wan C, Li L, Bai Y, Guo J, Wang Y, Chen X, Wu B, Sun H, Liu W, Wang J, Xu C. Nature 493 111-115 (2013)
  5. Phosphoinositide isoforms determine compartment-specific ion channel activity. Zhang X, Li X, Xu H. Proc Natl Acad Sci U S A 109 11384-11389 (2012)
  6. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Hamilton PJ, Belovich AN, Khelashvili G, Saunders C, Erreger K, Javitch JA, Sitte HH, Weinstein H, Matthies HJG, Galli A. Nat Chem Biol 10 582-589 (2014)
  7. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardó F, Plata C, Gaudet R, Vicente R, Valverde MA. Proc Natl Acad Sci U S A 110 9553-9558 (2013)
  8. Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL. Neuron 84 1198-1212 (2014)
  9. Regulation of voltage-gated potassium channels by PI(4,5)P2. Kruse M, Hammond GR, Hille B. J Gen Physiol 140 189-205 (2012)
  10. Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R. Nature 527 198-203 (2015)
  11. Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. Martin GM, Kandasamy B, DiMaio F, Yoshioka C, Shyng SL. Elife 6 e31054 (2017)
  12. Structural Titration of Slo2.2, a Na+-Dependent K+ Channel. Hite RK, MacKinnon R. Cell 168 390-399.e11 (2017)
  13. Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. Bagriantsev SN, Clark KA, Minor DL. EMBO J 31 3297-3308 (2012)
  14. Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Wydeven N, Marron Fernandez de Velasco E, Du Y, Benneyworth MA, Hearing MC, Fischer RA, Thomas MJ, Weaver CD, Wickman K. Proc Natl Acad Sci U S A 111 10755-10760 (2014)
  15. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Masotti A, Uva P, Davis-Keppen L, Basel-Vanagaite L, Cohen L, Pisaneschi E, Celluzzi A, Bencivenga P, Fang M, Tian M, Xu X, Cappa M, Dallapiccola B. Am J Hum Genet 96 295-300 (2015)
  16. Structural mechanisms of phospholipid activation of the human TPC2 channel. She J, Zeng W, Guo J, Chen Q, Bai XC, Jiang Y. Elife 8 e45222 (2019)
  17. Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating. Zhang Q, Zhou P, Chen Z, Li M, Jiang H, Gao Z, Yang H. Proc Natl Acad Sci U S A 110 20093-20098 (2013)
  18. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids. Lee SJ, Ren F, Zangerl-Plessl EM, Heyman S, Stary-Weinzinger A, Yuan P, Nichols CG. J Gen Physiol 148 227-237 (2016)
  19. Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG. Nat Struct Mol Biol 23 31-36 (2016)
  20. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. Lee SJ, Wang S, Borschel W, Heyman S, Gyore J, Nichols CG. Nat Commun 4 2786 (2013)
  21. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Meng XY, Zhang HX, Logothetis DE, Cui M. Biophys J 102 2049-2059 (2012)
  22. Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels. Dai G, Yu H, Kruse M, Traynor-Kaplan A, Hille B. Proc Natl Acad Sci U S A 113 E3290-9 (2016)
  23. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Wu JX, Ding D, Wang M, Kang Y, Zeng X, Chen L. Protein Cell 9 553-567 (2018)
  24. Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Bodhinathan K, Slesinger PA. Proc Natl Acad Sci U S A 110 18309-18314 (2013)
  25. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Tóth B, Csanády L. Proc Natl Acad Sci U S A 109 13440-13445 (2012)
  26. Role for germline mutations and a rare coding single nucleotide polymorphism within the KCNJ5 potassium channel in a large cohort of sporadic cases of primary aldosteronism. Murthy M, Xu S, Massimo G, Wolley M, Gordon RD, Stowasser M, O'Shaughnessy KM. Hypertension 63 783-789 (2014)
  27. Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MS. Biochemistry 52 279-281 (2013)
  28. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels. Cabanos C, Wang M, Han X, Hansen SB. Cell Rep 20 1287-1294 (2017)
  29. Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A. Le SC, Jia Z, Chen J, Yang H. Nat Commun 10 3769 (2019)
  30. Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. Wang W, Whorton MR, MacKinnon R. Elife 3 e03671 (2014)
  31. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z. Cell Rep 14 129-139 (2016)
  32. Insights into Membrane Protein-Lipid Interactions from Free Energy Calculations. Corey RA, Vickery ON, Sansom MSP, Stansfeld PJ. J Chem Theory Comput 15 5727-5736 (2019)
  33. Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Scalise M, Pochini L, Giangregorio N, Tonazzi A, Indiveri C. Pharmaceutics 5 472-497 (2013)
  34. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. Murthy M, Azizan EA, Brown MJ, O'Shaughnessy KM. J Hypertens 30 1827-1833 (2012)
  35. Phosphatidic acid modulation of Kv channel voltage sensor function. Hite RK, Butterwick JA, MacKinnon R. Elife 3 (2014)
  36. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti. Piermarini PM, Rouhier MF, Schepel M, Kosse C, Beyenbach KW. Insect Biochem Mol Biol 43 75-90 (2013)
  37. Interplay between calmodulin and phosphatidylinositol 4,5-bisphosphate in Ca2+-induced inactivation of transient receptor potential vanilloid 6 channels. Cao C, Zakharian E, Borbiro I, Rohacs T. J Biol Chem 288 5278-5290 (2013)
  38. Dual effect of phosphatidylinositol (4,5)-bisphosphate PIP(2) on Shaker K(+) [corrected] channels. Abderemane-Ali F, Es-Salah-Lamoureux Z, Delemotte L, Kasimova MA, Labro AJ, Snyders DJ, Fedida D, Tarek M, Baró I, Loussouarn G. J Biol Chem 287 36158-36167 (2012)
  39. A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A). Yu K, Jiang T, Cui Y, Tajkhorshid E, Hartzell HC. Proc Natl Acad Sci U S A 116 19952-19962 (2019)
  40. Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Glaaser IW, Slesinger PA. Sci Rep 7 4592 (2017)
  41. IRK-1 potassium channels mediate peptidergic inhibition of Caenorhabditis elegans serotonin neurons via a G(o) signaling pathway. Emtage L, Aziz-Zaman S, Padovan-Merhar O, Horvitz HR, Fang-Yen C, Ringstad N. J Neurosci 32 16285-16295 (2012)
  42. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. J Biol Chem 294 7068-7084 (2019)
  43. Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein α subunit (Gαi/o). Mase Y, Yokogawa M, Osawa M, Shimada I. J Biol Chem 287 19537-19549 (2012)
  44. Analysis of the selectivity filter of the voltage-gated sodium channel Na(v)Rh. Zhang X, Xia M, Li Y, Liu H, Jiang X, Ren W, Wu J, DeCaen P, Yu F, Huang S, He J, Clapham DE, Yan N, Gong H. Cell Res 23 409-422 (2013)
  45. Migration of PIP2 lipids on voltage-gated potassium channel surface influences channel deactivation. Chen L, Zhang Q, Qiu Y, Li Z, Chen Z, Jiang H, Li Y, Yang H. Sci Rep 5 15079 (2015)
  46. Energetics and location of phosphoinositide binding in human Kir2.1 channels. D'Avanzo N, Lee SJ, Cheng WWL, Nichols CG. J Biol Chem 288 16726-16737 (2013)
  47. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ are both required to open the Cl- channel TMEM16A. Tembo M, Wozniak KL, Bainbridge RE, Carlson AE. J Biol Chem 294 12556-12564 (2019)
  48. A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Hénault CM, Govaerts C, Spurny R, Brams M, Estrada-Mondragon A, Lynch J, Bertrand D, Pardon E, Evans GL, Woods K, Elberson BW, Cuello LG, Brannigan G, Nury H, Steyaert J, Baenziger JE, Ulens C. Nat Chem Biol 15 1156-1164 (2019)
  49. Activation of TRPC4β by Gαi subunit increases Ca2+ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Jeon JP, Roh SE, Wie J, Kim J, Kim H, Lee KP, Yang D, Jeon JH, Cho NH, Kim IG, Kang DE, Kim HJ, So I. Cell Calcium 54 307-319 (2013)
  50. Cooperative regulation by G proteins and Na(+) of neuronal GIRK2 K(+) channels. Wang W, Touhara KK, Weir K, Bean BP, MacKinnon R. Elife 5 e15751 (2016)
  51. Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Barber DM, Schönberger M, Burgstaller J, Levitz J, Weaver CD, Isacoff EY, Baier H, Trauner D. Chem Sci 7 2347-2352 (2016)
  52. Structural rearrangements underlying ligand-gating in Kir channels. Wang S, Lee SJ, Heyman S, Enkvetchakul D, Nichols CG. Nat Commun 3 617 (2012)
  53. BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices. Weiner BE, Woetzel N, Karakaş M, Alexander N, Meiler J. Structure 21 1107-1117 (2013)
  54. Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates KCNQ3 K+ channels by interacting with four cytoplasmic channel domains. Choveau FS, De la Rosa V, Bierbower SM, Hernandez CC, Shapiro MS. J Biol Chem 293 19411-19428 (2018)
  55. Novel Kv7.1-phosphatidylinositol 4,5-bisphosphate interaction sites uncovered by charge neutralization scanning. Eckey K, Wrobel E, Strutz-Seebohm N, Pott L, Schmitt N, Seebohm G. J Biol Chem 289 22749-22758 (2014)
  56. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. Bousova K, Jirku M, Bumba L, Bednarova L, Sulc M, Franek M, Vyklicky L, Vondrasek J, Teisinger J. Biophys Chem 205 24-32 (2015)
  57. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Kano H, Toyama Y, Imai S, Iwahashi Y, Mase Y, Yokogawa M, Osawa M, Shimada I. Nat Commun 10 2008 (2019)
  58. Engineered interaction between SUR1 and Kir6.2 that enhances ATP sensitivity in KATP channels. Pratt EB, Zhou Q, Gay JW, Shyng SL. J Gen Physiol 140 175-187 (2012)
  59. Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. Kim HJ, Jeong MH, Kim KR, Jung CY, Lee SY, Kim H, Koh J, Vuong TA, Jung S, Yang H, Park SK, Choi D, Kim SH, Kang K, Sohn JW, Park JM, Jeon D, Koo SH, Ho WK, Kang JS, Kim ST, Cho H. Elife 5 e17159 (2016)
  60. A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P₂. Telezhkin V, Thomas AM, Harmer SC, Tinker A, Brown DA. Pflugers Arch 465 945-953 (2013)
  61. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. Sci Signal 6 ra69 (2013)
  62. An essential role of PI(4,5)P₂ for maintaining the activity of the transient receptor potential canonical (TRPC)4β. Kim H, Jeon JP, Hong C, Kim J, Myeong J, Jeon JH, So I. Pflugers Arch 465 1011-1021 (2013)
  63. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore. Chokshi RH, Larsen AT, Bhayana B, Cotten JF. Mol Pharmacol 88 926-934 (2015)
  64. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. J Biol Chem 292 6135-6147 (2017)
  65. Distinct gating mechanisms revealed by the structures of a multi-ligand gated K(+) channel. Kong C, Zeng W, Ye S, Chen L, Sauer DB, Lam Y, Derebe MG, Jiang Y. Elife 1 e00184 (2012)
  66. Ivermectin activates GIRK channels in a PIP2 -dependent, Gβγ -independent manner and an amino acid residue at the slide helix governs the activation. Chen IS, Tateyama M, Fukata Y, Uesugi M, Kubo Y. J Physiol 595 5895-5912 (2017)
  67. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G. Front Pharmacol 3 125 (2012)
  68. A network of phosphatidylinositol (4,5)-bisphosphate (PIP2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster. Belovich AN, Aguilar JI, Mabry SJ, Cheng MH, Zanella D, Hamilton PJ, Stanislowski DJ, Shekar A, Foster JD, Bahar I, Matthies HJG, Galli A. Mol Psychiatry 26 4417-4430 (2021)
  69. Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Kirsch SA, Kugemann A, Carpaneto A, Böckmann RA, Dietrich P. Cell Mol Life Sci 75 3803-3815 (2018)
  70. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Liu Y, LoCaste CE, Liu W, Poltash ML, Russell DH, Laganowsky A. Nat Commun 10 1352 (2019)
  71. Structural basis for mammalian nucleotide sugar transport. Ahuja S, Whorton MR. Elife 8 e45221 (2019)
  72. The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Meng XY, Liu S, Cui M, Zhou R, Logothetis DE. Sci Rep 6 29399 (2016)
  73. Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Sung MW, Yang Z, Driggers CM, Patton BL, Mostofian B, Russo JD, Zuckerman DM, Shyng SL. Proc Natl Acad Sci U S A 118 e2109441118 (2021)
  74. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, Nichols CG. J Gen Physiol 152 e201912422 (2020)
  75. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Fürst O, Nichols CG, Lamoureux G, D'Avanzo N. Biophys J 107 2786-2796 (2014)
  76. PIP2 regulation of TRPC5 channel activation and desensitization. Ningoo M, Plant LD, Greka A, Logothetis DE. J Biol Chem 296 100726 (2021)
  77. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Yang HQ, Martinez-Ortiz W, Hwang J, Fan X, Cardozo TJ, Coetzee WA. Proc Natl Acad Sci U S A 117 10593-10602 (2020)
  78. Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations. Kasimova MA, Tarek M, Shaytan AK, Shaitan KV, Delemotte L. Biochim Biophys Acta 1838 1322-1331 (2014)
  79. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J. J Biol Chem 290 21086-21100 (2015)
  80. Phosphoinositides alter lipid bilayer properties. Rusinova R, Hobart EA, Koeppe RE, Andersen OS. J Gen Physiol 141 673-690 (2013)
  81. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule. Takemoto Y, Slough DP, Meinke G, Katnik C, Graziano ZA, Chidipi B, Reiser M, Alhadidy MM, Ramirez R, Salvador-Montañés O, Ennis S, Guerrero-Serna G, Haburcak M, Diehl C, Cuevas J, Jalife J, Bohm A, Lin YS, Noujaim SF. FASEB J 32 1778-1793 (2018)
  82. The cytosolic GH loop regulates the phosphatidylinositol 4,5-bisphosphate-induced gating kinetics of Kir2 channels. An HL, Lü SQ, Li JW, Meng XY, Zhan Y, Cui M, Long M, Zhang HL, Logothetis DE. J Biol Chem 287 42278-42287 (2012)
  83. A Database of Predicted Binding Sites for Cholesterol on Membrane Proteins, Deep in the Membrane. Lee AG. Biophys J 115 522-532 (2018)
  84. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels. Velisetty P, Borbiro I, Kasimova MA, Liu L, Badheka D, Carnevale V, Rohacs T. Sci Rep 6 27652 (2016)
  85. The ICl,swell inhibitor DCPIB blocks Kir channels that possess weak affinity for PIP2. Deng W, Mahajan R, Baumgarten CM, Logothetis DE. Pflugers Arch 468 817-824 (2016)
  86. Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels. Soussia IB, Choveau FS, Blin S, Kim EJ, Feliciangeli S, Chatelain FC, Kang D, Bichet D, Lesage F. Front Mol Neurosci 11 301 (2018)
  87. Does PKC activation increase the homologous desensitization of μ opioid receptors? Arttamangkul S, Birdsong W, Williams JT. Br J Pharmacol 172 583-592 (2015)
  88. Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Li J, Lü S, Liu Y, Pang C, Chen Y, Zhang S, Yu H, Long M, Zhang H, Logothetis DE, Zhan Y, An H. Sci Rep 5 11289 (2015)
  89. Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. Channels (Austin) 9 44-49 (2015)
  90. Influenza Hemagglutinin Modulates Phosphatidylinositol 4,5-Bisphosphate Membrane Clustering. Curthoys NM, Mlodzianoski MJ, Parent M, Butler MB, Raut P, Wallace J, Lilieholm J, Mehmood K, Maginnis MS, Waters H, Busse B, Zimmerberg J, Hess ST. Biophys J 116 893-909 (2019)
  91. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels. Linder T, Wang S, Zangerl-Plessl EM, Nichols CG, Stary-Weinzinger A. J Chem Inf Model 55 814-822 (2015)
  92. Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. Liu S, Bian X, Lockless SW. J Gen Physiol 140 671-679 (2012)
  93. A dual polybasic motif determines phosphoinositide binding and regulation in the P2X channel family. Bernier LP, Blais D, Boué-Grabot É, Séguéla P. PLoS One 7 e40595 (2012)
  94. Control of Kir channel gating by cytoplasmic domain interface interactions. Borschel WF, Wang S, Lee S, Nichols CG. J Gen Physiol 149 561-576 (2017)
  95. Molecular mechanisms of chloroquine inhibition of heterologously expressed Kir6.2/SUR2A channels. Ponce-Balbuena D, Rodríguez-Menchaca AA, López-Izquierdo A, Ferrer T, Kurata HT, Nichols CG, Sánchez-Chapula JA. Mol Pharmacol 82 803-813 (2012)
  96. Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels. Tang QY, Larry T, Hendra K, Yamamoto E, Bell J, Cui M, Logothetis DE, Boland LM. J Biol Chem 290 16517-16529 (2015)
  97. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, Wang R, Boatz JC, Manuel Martinez Galvez J, Shnyrova AV, Qi X, Buck M, van der Wel PCA, Ramachandran R. Proc Natl Acad Sci U S A 118 e2023079118 (2021)
  98. Determinants of trafficking, conduction, and disease within a K+ channel revealed through multiparametric deep mutational scanning. Coyote-Maestas W, Nedrud D, He Y, Schmidt D. Elife 11 e76903 (2022)
  99. Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2. Niemeyer MI, Cid LP, Paulais M, Teulon J, Sepúlveda FV. Sci Rep 7 45407 (2017)
  100. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity. Wydeven N, Young D, Mirkovic K, Wickman K. Proc Natl Acad Sci U S A 109 21492-21497 (2012)
  101. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels. Kurokawa T, Kiyonaka S, Nakata E, Endo M, Koyama S, Mori E, Tran NH, Dinh H, Suzuki Y, Hidaka K, Kawata M, Sato C, Sugiyama H, Morii T, Mori Y. Angew Chem Int Ed Engl 57 2586-2591 (2018)
  102. Decomposition of slide helix contributions to ATP-dependent inhibition of Kir6.2 channels. Li JB, Huang X, Zhang RS, Kim RY, Yang R, Kurata HT. J Biol Chem 288 23038-23049 (2013)
  103. Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels. Kozek KA, Du Y, Sharma S, Prael FJ, Spitznagel BD, Kharade SV, Denton JS, Hopkins CR, Weaver CD. ACS Chem Neurosci 10 358-370 (2019)
  104. Further advances in the production of membrane proteins in Pichia pastoris. Hedfalk K. Bioengineered 4 363-367 (2013)
  105. A constricted opening in Kir channels does not impede potassium conduction. Black KA, He S, Jin R, Miller DM, Bolla JR, Clarke OB, Johnson P, Windley M, Burns CJ, Hill AP, Laver D, Robinson CV, Smith BJ, Gulbis JM. Nat Commun 11 3024 (2020)
  106. Molecular overlap in the regulation of SK channels by small molecules and phosphoinositides. Zhang M, Meng XY, Zhang JF, Cui M, Logothetis DE. Sci Adv 1 e1500008 (2015)
  107. Calcium Release from Stores Inhibits GIRK. Kramer PF, Williams JT. Cell Rep 17 3246-3255 (2016)
  108. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). Ha J, Xu Y, Kawano T, Hendon T, Baki L, Garai S, Papapetropoulos A, Thakur GA, Plant LD, Logothetis DE. J Biol Chem 293 3546-3561 (2018)
  109. Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+. Li J, Xie X, Liu J, Yu H, Zhang S, Zhan Y, Zhang H, Logothetis DE, An H. PLoS One 9 e111372 (2014)
  110. New Structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Fagnen C, Bannwarth L, Oubella I, Forest E, De Zorzi R, de Araujo A, Mhoumadi Y, Bendahhou S, Perahia D, Vénien-Bryan C. Sci Rep 10 8392 (2020)
  111. Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. Archer CR, Enslow BT, Carver CM, Stockand JD. J Biol Chem 295 7958-7969 (2020)
  112. Structural basis for the ethanol action on G-protein-activated inwardly rectifying potassium channel 1 revealed by NMR spectroscopy. Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Proc Natl Acad Sci U S A 115 3858-3863 (2018)
  113. Andersen-Tawil Syndrome Is Associated With Impaired PIP2 Regulation of the Potassium Channel Kir2.1. Handklo-Jamal R, Meisel E, Yakubovich D, Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E, Oz S. Front Pharmacol 11 672 (2020)
  114. Characterization of Rebound Depolarization in Neurons of the Rat Medial Geniculate Body In Vitro. Wang XX, Jin Y, Sun H, Ma C, Zhang J, Wang M, Chen L. Neurosci Bull 32 16-26 (2016)
  115. DirectMX - One-Step Reconstitution of Membrane Proteins From Crude Cell Membranes Into Salipro Nanoparticles. Lloris-Garcerá P, Klinter S, Chen L, Skynner MJ, Löving R, Frauenfeld J. Front Bioeng Biotechnol 8 215 (2020)
  116. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes. Thornell IM, Bevensee MO. J Physiol 593 541-558 (2015)
  117. Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity. Povstyan OV, Barrese V, Stott JB, Greenwood IA. Pflugers Arch 469 213-223 (2017)
  118. Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B. Biomolecules 10 E430 (2020)
  119. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes. Kienitz MC, Mintert-Jancke E, Hertel F, Pott L. Cell Signal 26 1182-1192 (2014)
  120. Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels. Cunningham KP, MacIntyre DE, Mathie A, Veale EL. Acta Physiol (Oxf) 228 e13361 (2020)
  121. Growth of large and highly ordered 2D crystals of a K⁺ channel, structural role of lipidic environment. De Zorzi R, Nicholson WV, Guigner JM, Erne-Brand F, Vénien-Bryan C. Biophys J 105 398-408 (2013)
  122. Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating. Ambrosino P, Freri E, Castellotti B, Soldovieri MV, Mosca I, Manocchio L, Gellera C, Canafoglia L, Franceschetti S, Salis B, Iraci N, Miceli F, Ragona F, Granata T, DiFrancesco JC, Taglialatela M. Mol Neurobiol 55 7009-7024 (2018)
  123. Lipid bilayer modules as determinants of K+ channel gating. Syeda R, Santos JS, Montal M. J Biol Chem 289 4233-4243 (2014)
  124. Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase. Treiber F, Rosker C, Keren-Raifman T, Steinecker B, Gorischek A, Dascal N, Schreibmayer W. Biochim Biophys Acta 1828 1214-1221 (2013)
  125. Studying Structural Dynamics of Potassium Channels by Single-Molecule FRET. Wang S, Brettmann JB, Nichols CG. Methods Mol Biol 1684 163-180 (2018)
  126. Subtype-selective positive modulation of KCa 2 channels depends on the HA/HB helices. Nam YW, Cui M, El-Sayed NS, Orfali R, Nguyen M, Yang G, Rahman MA, Lee J, Zhang M. Br J Pharmacol 179 460-472 (2022)
  127. The influence of membrane bilayer thickness on KcsA channel activity. Callahan KM, Mondou B, Sasseville L, Schwartz JL, D'Avanzo N. Channels (Austin) 13 424-439 (2019)
  128. A computational design approach for virtual screening of peptide interactions across K(+) channel families. Doupnik CA, Parra KC, Guida WC. Comput Struct Biotechnol J 13 85-94 (2015)
  129. Comparison of K+ Channel Families. Taura J, Kircher DM, Gameiro-Ros I, Slesinger PA. Handb Exp Pharmacol 267 1-49 (2021)
  130. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria. Bragança B, Oliveira-Monteiro N, Ferreirinha F, Lima PA, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Front Pharmacol 7 45 (2016)
  131. State-dependent network connectivity determines gating in a K+ channel. Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. Structure 22 1037-1046 (2014)
  132. Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries. Bagriantsev SN, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL. ACS Chem Neurosci 5 812-822 (2014)
  133. The Lipid Activation Mechanism of a Transmembrane Potassium Channel. Borcik CG, Versteeg DB, Amani R, Yekefallah M, Khan NH, Wylie BJ. J Am Chem Soc 142 14102-14116 (2020)
  134. Conformational changes underlying pore dilation in the cytoplasmic domain of mammalian inward rectifier K+ channels. Inanobe A, Nakagawa A, Kurachi Y. PLoS One 8 e79844 (2013)
  135. LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. Nanazashvili M, Sánchez-Rodríguez JE, Fosque B, Bezanilla F, Sackin H. Biophys J 114 88-97 (2018)
  136. Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels. Robertson JL, Palmer LG, Roux B. Biophys J 103 434-443 (2012)
  137. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels. Xie L, Liang T, Kang Y, Lin X, Sobbi R, Xie H, Chao C, Backx P, Feng ZP, Shyng SL, Gaisano HY. J Mol Cell Cardiol 75 100-110 (2014)
  138. Structural Basis for Differences in Dynamics Induced by Leu Versus Ile Residues in the CD Loop of Kir Channels. Lü S, An H, Zhang H, Long M. Mol Neurobiol 53 5948-5961 (2016)
  139. Tetrameric structure of SUR2B revealed by electron microscopy of oriented single particles. Fotinou C, Aittoniemi J, de Wet H, Polidori A, Pucci B, Sansom MS, Vénien-Bryan C, Ashcroft FM. FEBS J 280 1051-1063 (2013)
  140. Three pairs of weak interactions precisely regulate the G-loop gate of Kir2.1 channel. Li J, Xiao S, Xie X, Zhou H, Pang C, Li S, Zhang H, Logothetis DE, Zhan Y, An H. Proteins 84 1929-1937 (2016)
  141. Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels. Lu J, Xu H, Yu H, Hu X, Xia J, Zhu Y, Wang F, Wu HA, Jiang L, Wang H. Sci Adv 8 eabl5070 (2022)
  142. A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating. Bushman JD, Zhou Q, Shyng SL. PLoS One 8 e63733 (2013)
  143. Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. Wang S, Makhina EN, Masia R, Hyrc KL, Formanack ML, Nichols CG. J Biol Chem 288 4378-4388 (2013)
  144. Expression, purification, and electrophysiological characterization of a recombinant, fluorescent Kir6.2 in mammalian cells. Agasid MT, Wang X, Huang Y, Janczak CM, Bränström R, Saavedra SS, Aspinwall CA. Protein Expr Purif 146 61-68 (2018)
  145. Gating and modulation of an inward-rectifier potassium channel. Jogini V, Jensen MØ, Shaw DE. J Gen Physiol 155 e202213085 (2023)
  146. NCI-H295R cell line as in vitro model of hyperaldosteronism lacks functional KCNJ5 (GIRK4; Kir3.4) channels. Kienitz MC, Mergia E, Pott L. Mol Cell Endocrinol 412 272-280 (2015)
  147. Targeted insertional mutagenesis libraries for deep domain insertion profiling. Coyote-Maestas W, Nedrud D, Okorafor S, He Y, Schmidt D. Nucleic Acids Res 48 e11 (2020)
  148. A novel, radiolabel-free pulse chase strategy to study Kir3 channel ontogeny. Zylbergold P, Sleno R, Hébert TE. J Recept Signal Transduct Res 33 144-152 (2013)
  149. Applying high-performance computing in drug discovery and molecular simulation. Liu T, Lu D, Zhang H, Zheng M, Yang H, Xu Y, Luo C, Zhu W, Yu K, Jiang H. Natl Sci Rev 3 49-63 (2016)
  150. Association of Kir genes with blood pressure responses to dietary sodium intervention: the GenSalt study. Gong X, Han X, Lu X, Chen J, Huang J, Kelly TN, Chen CS, He J, Gu D, Chen S. Hypertens Res 41 1045-1053 (2018)
  151. Biophysical physiology of phosphoinositide rapid dynamics and regulation in living cells. Jensen JB, Falkenburger BH, Dickson EJ, de la Cruz L, Dai G, Myeong J, Jung SR, Kruse M, Vivas O, Suh BC, Hille B. J Gen Physiol 154 e202113074 (2022)
  152. Entropy in the Molecular Recognition of Membrane Protein-Lipid Interactions. Qiao P, Schrecke S, Walker T, McCabe JW, Lyu J, Zhu Y, Zhang T, Kumar S, Clemmer D, Russell DH, Laganowsky A. J Phys Chem Lett 12 12218-12224 (2021)
  153. Identification and Characterization of Specific Protein-Lipid Interactions Using Molecular Simulation. Corey RA, Sansom MSP, Stansfeld PJ. Methods Mol Biol 2315 121-139 (2021)
  154. Modulation of IKs channel-PIP2 interaction by PRMT1 plays a critical role in the control of cardiac repolarization. An X, Lee J, Kim GH, Kim HJ, Pyo HJ, Kwon I, Cho H. J Cell Physiol 237 3069-3079 (2022)
  155. Paradoxical activation of an inwardly rectifying potassium channel mutant by spermine: "(b)locking" open the bundle crossing gate. Vilin YY, Nunez JJ, Kim RY, Dake GR, Kurata HT. Mol Pharmacol 84 572-581 (2013)
  156. Permeation mechanisms through the selectivity filter and the open helix bundle crossing gate of GIRK2. Li DL, Hu L, Wang L, Chen CL. Comput Struct Biotechnol J 18 3950-3958 (2020)
  157. Rebuilding a macromolecular membrane complex at the atomic scale: case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2. Sapay N, Estrada-Mondragon A, Moreau C, Vivaudou M, Crouzy S. Proteins 82 1694-1707 (2014)
  158. Roles of PLCβ, PIP2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. Hu B, Boyle CA, Lei S. J Cell Physiol 237 660-674 (2022)
  159. The dynamic interplay of PIP2 and ATP in the regulation of the KATP channel. Pipatpolkai T, Usher SG, Vedovato N, Ashcroft FM, Stansfeld PJ. J Physiol 600 4503-4519 (2022)
  160. Use of a Molecular Switch Probe to Activate or Inhibit GIRK1 Heteromers In Silico Reveals a Novel Gating Mechanism. Gazgalis D, Cantwell L, Xu Y, Thakur GA, Cui M, Guarnieri F, Logothetis DE. Int J Mol Sci 23 10820 (2022)
  161. Cushing Syndrome in a Pediatric Patient With a KCNJ5 Variant and Successful Treatment With Low-dose Ketoconazole. Tatsi C, Maria AG, Malloy C, Lin L, London E, Settas N, Flippo C, Keil M, Hannah-Shmouni F, Hoffman DA, Stratakis CA. J Clin Endocrinol Metab 106 1606-1616 (2021)
  162. Emerging complexities of lipid regulation of potassium channels. Kurata HT. J Gen Physiol 148 201-205 (2016)
  163. Functional mapping of the N-terminal arginine cluster and C-terminal acidic residues of Kir6.2 channel fused to a G protein-coupled receptor. Principalli MA, Lemel L, Rongier A, Godet AC, Langer K, Revilloud J, Darré L, Domene C, Vivaudou M, Moreau CJ. Biochim Biophys Acta Biomembr 1859 2144-2153 (2017)
  164. IKACh is constitutively active via PKC epsilon in aging mediated atrial fibrillation. Chang M, Gada KD, Chidipi B, Tsalatsanis A, Gibbons J, Remily-Wood E, Logothetis DE, Oberstaller J, Noujaim SF. iScience 25 105442 (2022)
  165. Insight into the Phospholipid-Binding Preferences of Kir3.4. Qiao P, Schrecke S, Lyu J, Zhu Y, Zhang T, Benavides A, Laganowsky A. Biochemistry 60 3813-3821 (2021)
  166. Insights into the structural nature of the transition state in the Kir channel gating pathway. Fowler PW, Bollepalli MK, Rapedius M, Nematian-Ardestani E, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. Channels (Austin) 8 551-555 (2014)
  167. K+ -independent Kir blockade by external Cs+ and Ba2. Gilles O. Physiol Rep 10 e15200 (2022)
  168. L-DOPA-quinone Mediated Recovery from GIRK Channel Firing Inhibition in Dopaminergic Neurons. Bizzarri BM, Botta L, Aversa D, Mercuri NB, Poli G, Barbieri A, Berretta N, Saladino R. ACS Med Chem Lett 10 431-436 (2019)
  169. Molecular mechanism of phosphoinositides' specificity for the inwardly rectifying potassium channel Kir2.2. Meng XY, Kang SG, Zhou R. Chem Sci 9 8352-8362 (2018)
  170. Seven perspectives on GPCR H/D-exchange proteomics methods. Zhang X. F1000Res 6 89 (2017)
  171. The where and how of PIP regulation of cone photoreceptor CNG channels. Zhou L, Logothetis DE. J Gen Physiol 141 403-407 (2013)
  172. A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation. Sackin H, Nanazashvili M. Channels (Austin) 18 2294661 (2024)
  173. CL-705G: a novel chemical Kir6.2-specific KATP channel opener. Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. Front Pharmacol 14 1197257 (2023)
  174. Commentary: Golgin-97 Targets Ectopically Expressed Inward Rectifying Potassium Channel, Kir2.1, to the Trans-Golgi Network in COS-7 Cells. Zangerl-Plessl EM, van der Heyden MAG. Front Physiol 9 1401 (2018)
  175. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating. Zhang Y, Tao X, MacKinnon R. Proc Natl Acad Sci U S A 119 e2114046119 (2022)
  176. Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, Vénien-Bryan C. Int J Mol Sci 23 335 (2021)
  177. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Lei S, Hu B. Neuropharmacology 196 108714 (2021)
  178. Ionic signalling mechanisms involved in neurokinin-3 receptor-mediated augmentation of fear-potentiated startle response in the basolateral amygdala. Boyle CA, Hu B, Quaintance KL, Mastrud MR, Lei S. J Physiol 600 4325-4345 (2022)
  179. Modeling GIRK channel conductance. Short B. J Gen Physiol 151 1159 (2019)
  180. Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons. Eguchi K, Le Monnier E, Shigemoto R. J Neurosci 43 4197-4216 (2023)
  181. PI(4,5)P2 and Cholesterol: Synthesis, Regulation, and Functions. Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. Adv Exp Med Biol 1422 3-59 (2023)
  182. Redox Bridling of GIRK Channel Activity. Boccaccio A, Finol-Urdaneta RK. Function (Oxf) 4 zqad027 (2023)
  183. Role of Lysosomal Cholesterol in Regulating PI(4,5)P2-Dependent Ion Channel Function. Dickson EJ. Adv Exp Med Biol 1422 193-215 (2023)
  184. Subunit gating resulting from individual protonation events in Kir2 channels. Maksaev G, Bründl-Jirout M, Stary-Weinzinger A, Zangerl-Plessl EM, Lee SJ, Nichols CG. Nat Commun 14 4538 (2023)
  185. The Un(f)told Story of General Anesthesia. Zsila F. Chembiochem 19 895-901 (2018)
  186. Yeast as a tool for membrane protein production and structure determination. Carlesso A, Delgado R, Ruiz Isant O, Uwangue O, Valli D, Bill RM, Hedfalk K. FEMS Yeast Res 22 foac047 (2022)