3rt0 Citations

The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins.

Mol Cell 42 662-72 (2011)
Cited: 139 times
EuropePMC logo PMID: 21658606

Abstract

PYR1/PYL/RCAR proteins (PYLs) are confirmed abscisic acid (ABA) receptors, which inhibit protein phosphatase 2C (PP2C) upon binding to ABA. Arabidopsis thaliana has 14 PYLs, yet their functional distinction remains unclear. Here, we report systematic biochemical characterization of PYLs. A subclass of PYLs, represented by PYL10, inhibited PP2C in the absence of any ligand. Crystal structures of PYL10, both in the free form and in the HAB1 (PP2C)-bound state, revealed the structural basis for its constitutive activity. Structural-guided biochemical analyses revealed that ABA-independent inhibition of PP2C requires the PYLs to exist in a monomeric state. In addition, the residues guarding the entrance to the ligand-binding pocket of these PYLs should be bulky and hydrophobic. Based on these principles, we were able to generate monomeric PYL2 variants that gained constitutive inhibitory effect on PP2Cs. These findings provide an important framework for understanding the complex regulation of ABA signaling by PYL proteins.

Reviews - 3rt0 mentioned but not cited (3)

  1. Structural basis and functions of abscisic acid receptors PYLs. Zhang XL, Jiang L, Xin Q, Liu Y, Tan JX, Chen ZZ. Front Plant Sci 6 88 (2015)
  2. Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. Hewage KAH, Yang JF, Wang D, Hao GF, Yang GF, Zhu JK. Adv Sci (Weinh) 7 2001265 (2020)
  3. Review on Structures of Pesticide Targets. Li X, Yang X, Zheng X, Bai M, Hu D. Int J Mol Sci 21 E7144 (2020)

Articles - 3rt0 mentioned but not cited (6)

  1. Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Tischer SV, Wunschel C, Papacek M, Kleigrewe K, Hofmann T, Christmann A, Grill E. Proc Natl Acad Sci U S A 114 10280-10285 (2017)
  2. Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13. Li W, Wang L, Sheng X, Yan C, Zhou R, Hang J, Yin P, Yan N. Cell Res 23 1369-1379 (2013)
  3. Structural insights into the abscisic acid stereospecificity by the ABA receptors PYR/PYL/RCAR. Zhang X, Jiang L, Wang G, Yu L, Zhang Q, Xin Q, Wu W, Gong Z, Chen Z. PLoS One 8 e67477 (2013)
  4. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity. Tanoue K, Miller Jenkins LM, Durell SR, Debnath S, Sakai H, Tagad HD, Ishida K, Appella E, Mazur SJ. Biochemistry 52 5830-5843 (2013)
  5. Molecular mechanisms in the activation of abscisic acid receptor PYR1. Dorosh L, Kharenko OA, Rajagopalan N, Loewen MC, Stepanova M. PLoS Comput Biol 9 e1003114 (2013)
  6. Design and Functional Characterization of a Novel Abscisic Acid Analog. Han X, Jiang L, Che C, Wan C, Lu H, Xiao Y, Xu Y, Chen Z, Qin Z. Sci Rep 7 43863 (2017)


Reviews citing this publication (21)

  1. Structure and function of abscisic acid receptors. Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M. Trends Plant Sci 18 259-266 (2013)
  2. Signaling mechanisms in abscisic acid-mediated stomatal closure. Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. Plant J 105 307-321 (2021)
  3. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Yang W, Zhang W, Wang X. Plant Biotechnol J 15 4-14 (2017)
  4. Abscisic acid perception and signaling: structural mechanisms and applications. Ng LM, Melcher K, Teh BT, Xu HE. Acta Pharmacol Sin 35 567-584 (2014)
  5. Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Plant Cell Physiol 56 1043-1052 (2015)
  6. Target of Rapamycin Signaling in Plant Stress Responses. Fu L, Wang P, Xiong Y. Plant Physiol 182 1613-1623 (2020)
  7. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Singh A, Pandey A, Srivastava AK, Tran LS, Pandey GK. Crit Rev Biotechnol 36 1023-1035 (2016)
  8. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. Asad MAU, Zakari SA, Zhao Q, Zhou L, Ye Y, Cheng F. Int J Mol Sci 20 E256 (2019)
  9. ABA and cytokinins: challenge and opportunity for plant stress research. Verslues PE. Plant Mol Biol 91 629-640 (2016)
  10. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Ben-Ari G. Plant Cell Rep 31 1357-1369 (2012)
  11. Evolution of Abscisic Acid Signaling Module and Its Perception. Sun Y, Pri-Tal O, Michaeli D, Mosquna A. Front Plant Sci 11 934 (2020)
  12. Targeting proteins for proteasomal degradation-a new function of Arabidopsis ABI1 protein phosphatase 2C. Ludwików A. Front Plant Sci 6 310 (2015)
  13. The Multifaceted Regulation of SnRK2 Kinases. Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. Cells 10 2180 (2021)
  14. Abscisic Acid: Role in Fruit Development and Ripening. Gupta K, Wani SH, Razzaq A, Skalicky M, Samantara K, Gupta S, Pandita D, Goel S, Grewal S, Hejnak V, Shiv A, El-Sabrout AM, Elansary HO, Alaklabi A, Brestic M. Front Plant Sci 13 817500 (2022)
  15. An Update on Crop ABA Receptors. Ruiz-Partida R, Rosario SM, Lozano-Juste J. Plants (Basel) 10 1087 (2021)
  16. PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli. Fidler J, Graska J, Gietler M, Nykiel M, Prabucka B, Rybarczyk-Płońska A, Muszyńska E, Morkunas I, Labudda M. Cells 11 1352 (2022)
  17. Core Components of Abscisic Acid Signaling and Their Post-translational Modification. Lim J, Lim CW, Lee SC. Front Plant Sci 13 895698 (2022)
  18. Synthesis and regulation of auxin and abscisic acid in maize. Yue K, Lingling L, Xie J, Coulter JA, Luo Z. Plant Signal Behav 16 1891756 (2021)
  19. Structural basis for the regulation of phytohormone receptors. Miyakawa T, Tanokura M. Biosci Biotechnol Biochem 81 1261-1273 (2017)
  20. Regulatory mechanism of abscisic acid signaling. Miyakawa T, Tanokura M. Biophysics (Nagoya-shi) 7 123-128 (2011)
  21. Persistence of Abscisic Acid Analogs in Plants: Chemical Control of Plant Growth and Physiology. Nguyen CH, Yan D, Nambara E. Genes (Basel) 14 1078 (2023)

Articles citing this publication (109)

  1. Abscisic Acid synthesis and response. Finkelstein R. Arabidopsis Book 11 e0166 (2013)
  2. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL. Plant Cell 24 2483-2496 (2012)
  3. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. Dev Cell 32 278-289 (2015)
  4. ABA receptor PYL9 promotes drought resistance and leaf senescence. Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK. Proc Natl Acad Sci U S A 113 1949-1954 (2016)
  5. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK. Mol Cell 69 100-112.e6 (2018)
  6. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Bhaskara GB, Nguyen TT, Verslues PE. Plant Physiol 160 379-395 (2012)
  7. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR. Proc Natl Acad Sci U S A 110 12132-12137 (2013)
  8. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Kong L, Cheng J, Zhu Y, Ding Y, Meng J, Chen Z, Xie Q, Guo Y, Li J, Yang S, Gong Z. Nat Commun 6 8630 (2015)
  9. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI. Elife 3 e01739 (2014)
  10. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK. Proc Natl Acad Sci U S A 115 6058-6063 (2018)
  11. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL. Plant Physiol 158 970-980 (2012)
  12. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL. Plant Physiol 163 441-455 (2013)
  13. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodríguez PL. J Exp Bot 65 4451-4464 (2014)
  14. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou YJ, Wan Y, Liu W, Xie S, Lu T, Xue L, Liu Y, Macho AP, Tao WA, Bressan RA, Zhu JK. Cell Rep 23 3340-3351.e5 (2018)
  15. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI. Sci Rep 6 28941 (2016)
  16. Characterization and Functional Analysis of Pyrabactin Resistance-Like Abscisic Acid Receptor Family in Rice. Tian X, Wang Z, Li X, Lv T, Liu H, Wang L, Niu H, Bu Q. Rice (N Y) 8 28 (2015)
  17. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Zhao Y, Chan Z, Xing L, Liu X, Hou YJ, Chinnusamy V, Wang P, Duan C, Zhu JK. Cell Res 23 1380-1395 (2013)
  18. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots. Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Göttler J, Kempa S, Krischke M, Dietrich K, Mueller MJ, Vicente-Carbajosa J, Hanson J, Dröge-Laser W. Plant Cell 27 2244-2260 (2015)
  19. Identification and characterization of ABA receptors in Oryza sativa. He Y, Hao Q, Li W, Yan C, Yan N, Yin P. PLoS One 9 e95246 (2014)
  20. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Rodriguez L, Gonzalez-Guzman M, Diaz M, Rodrigues A, Izquierdo-Garcia AC, Peirats-Llobet M, Fernandez MA, Antoni R, Fernandez D, Marquez JA, Mulet JM, Albert A, Albert A, Rodriguez PL. Plant Cell 26 4802-4820 (2014)
  21. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Xing L, Zhao Y, Gao J, Xiang C, Zhu JK. Sci Rep 6 27177 (2016)
  22. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E. Proc Natl Acad Sci U S A 111 5741-5746 (2014)
  23. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Takeuchi J, Okamoto M, Akiyama T, Muto T, Yajima S, Sue M, Seo M, Kanno Y, Kamo T, Endo A, Nambara E, Hirai N, Ohnishi T, Cutler SR, Todoroki Y. Nat Chem Biol 10 477-482 (2014)
  24. Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Mosquna A, Peterson FC, Park SY, Lozano-Juste J, Volkman BF, Cutler SR. Proc Natl Acad Sci U S A 108 20838-20843 (2011)
  25. EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. Wang K, He J, Zhao Y, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song CP, Wang B, Yang S, Zhu JK, Gong Z. Plant Cell 30 815-834 (2018)
  26. Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism. Zhang X, Zhang Q, Xin Q, Yu L, Wang Z, Wu W, Jiang L, Wang G, Tian W, Deng Z, Wang Y, Liu Z, Long J, Gong Z, Chen Z. Structure 20 780-790 (2012)
  27. Interactions between soybean ABA receptors and type 2C protein phosphatases. Bai G, Yang DH, Zhao Y, Ha S, Yang F, Ma J, Gao XS, Wang ZM, Zhu JK. Plant Mol Biol 83 651-664 (2013)
  28. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1. Xie T, Ren R, Zhang YY, Pang Y, Yan C, Gong X, He Y, Li W, Miao D, Hao Q, Deng H, Wang Z, Wu JW, Yan N. J Biol Chem 287 794-802 (2012)
  29. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q. Mol Plant 9 1570-1582 (2016)
  30. Combining chemical and genetic approaches to increase drought resistance in plants. Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, Wang WL, Zeng A, Zhao CZ, Si T, Du J, Wu WW, Wang FX, Xu HE, Zhu JK. Nat Commun 8 1183 (2017)
  31. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. Ding Y, Lv J, Shi Y, Gao J, Hua J, Song C, Gong Z, Yang S. EMBO J 38 e99819 (2019)
  32. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling. Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK. PLoS Genet 12 e1005835 (2016)
  33. Insights into the correlation between Physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). Liu M, Ma Z, Zheng T, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q, Tang Z, Bu T, Li C, Chen H. BMC Genomics 19 648 (2018)
  34. A ligand-independent origin of abscisic acid perception. Sun Y, Harpazi B, Wijerathna-Yapa A, Merilo E, de Vries J, Michaeli D, Gal M, Cuming AC, Kollist H, Mosquna A. Proc Natl Acad Sci U S A 116 24892-24899 (2019)
  35. Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium. Zhang G, Lu T, Miao W, Sun L, Tian M, Wang J, Hao F. PeerJ 5 e4126 (2017)
  36. Functional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts. Kim N, Moon SJ, Min MK, Choi EH, Kim JA, Koh EY, Yoon I, Byun MO, Yoo SD, Kim BG. Front Plant Sci 6 614 (2015)
  37. Interaction network of core ABA signaling components in maize. Wang YG, Fu FL, Yu HQ, Hu T, Zhang YY, Tao Y, Zhu JK, Zhao Y, Li WC. Plant Mol Biol 96 245-263 (2018)
  38. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. Li Z, Waadt R, Schroeder JI. PLoS Biol 14 e1002461 (2016)
  39. Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities. West GM, Pascal BD, Ng LM, Soon FF, Melcher K, Xu HE, Chalmers MJ, Griffin PR. Structure 21 229-235 (2013)
  40. ABA Receptor Subfamily III Enhances Abscisic Acid Sensitivity and Improves the Drought Tolerance of Arabidopsis. Li X, Li G, Li Y, Kong X, Zhang L, Wang J, Li X, Yang Y. Int J Mol Sci 19 E1938 (2018)
  41. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat. Gordon CS, Rajagopalan N, Risseeuw EP, Surpin M, Ball FJ, Barber CJ, Buhrow LM, Clark SM, Page JE, Todd CD, Abrams SR, Loewen MC. PLoS One 11 e0164996 (2016)
  42. A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors. Ye Y, Zhou L, Liu X, Liu H, Li D, Cao M, Chen H, Xu L, Zhu JK, Zhao Y. Plant Physiol 173 2356-2369 (2017)
  43. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, Wankhede DP, Chaudhary B, Chinnusamy V. BMC Genomics 21 676 (2020)
  44. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response. Lim CW, Lee SC. Plant Cell Environ 39 1559-1575 (2016)
  45. Crystal structures of the Arabidopsis thaliana abscisic acid receptor PYL10 and its complex with abscisic acid. Sun D, Wang H, Wu M, Zang J, Wu F, Tian C. Biochem Biophys Res Commun 418 122-127 (2012)
  46. Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. Sugimoto H, Kondo S, Tanaka T, Imamura C, Muramoto N, Hattori E, Ogawa K, Mitsukawa N, Ohto C. J Exp Bot 65 5385-5400 (2014)
  47. Arabidopsis abscisic acid receptors play an important role in disease resistance. Lim CW, Lee SC. Plant Mol Biol 88 313-324 (2015)
  48. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. Krzywińska E, Bucholc M, Kulik A, Ciesielski A, Lichocka M, Dębski J, Ludwików A, Dadlez M, Rodriguez PL, Dobrowolska G. BMC Plant Biol 16 136 (2016)
  49. Ectopic Expression of Rice PYL3 Enhances Cold and Drought Tolerance in Arabidopsis thaliana. Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC. Mol Biotechnol 60 350-361 (2018)
  50. Activation of ABA Receptors Gene GhPYL9-11A Is Positively Correlated with Cotton Drought Tolerance in Transgenic Arabidopsis. Liang C, Liu Y, Li Y, Meng Z, Yan R, Zhu T, Zhu T, Wang Y, Kang S, Ali Abid M, Malik W, Sun G, Guo S, Zhang R. Front Plant Sci 8 1453 (2017)
  51. Genome-wide identification and characterization of ABA receptor PYL/RCAR gene family reveals evolution and roles in drought stress in Nicotiana tabacum. Bai G, Xie H, Yao H, Li F, Chen X, Zhang Y, Xiao B, Yang J, Li Y, Yang DH. BMC Genomics 20 575 (2019)
  52. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Benson CL, Kepka M, Wunschel C, Rajagopalan N, Nelson KM, Christmann A, Abrams SR, Grill E, Loewen MC. Phytochemistry 113 96-107 (2015)
  53. CARK1 phosphorylates subfamily III members of ABA receptors. Li X, Kong X, Huang Q, Zhang Q, Ge H, Zhang L, Li G, Peng L, Liu Z, Wang J, Li X, Yang Y. J Exp Bot 70 519-528 (2019)
  54. Identification of new abscisic acid receptor agonists using a wheat cell-free based drug screening system. Nemoto K, Kagawa M, Nozawa A, Hasegawa Y, Hayashi M, Imai K, Tomii K, Sawasaki T. Sci Rep 8 4268 (2018)
  55. Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. Soon FF, Suino-Powell KM, Li J, Yong EL, Xu HE, Melcher K. PLoS One 7 e47857 (2012)
  56. The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction. Li J, Shi C, Sun D, He Y, Lai C, Lv P, Xiong Y, Zhang L, Wu F, Tian C. Sci Rep 5 10890 (2015)
  57. The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Wang P, Qi S, Wang X, Dou L, Jia MA, Mao T, Guo Y, Wang X. Plant Cell 35 260-278 (2023)
  58. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases. Kerk D, Silver D, Uhrig RG, Moorhead GB. PLoS One 10 e0132863 (2015)
  59. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress. Zhang X, Liao M, Chang D, Zhang F. BMC Res Notes 7 927 (2014)
  60. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling. Wang X, Wu D, Yang Q, Zeng J, Jin G, Chen ZH, Zhang G, Dai F. Front Plant Sci 7 106 (2016)
  61. Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1. Nakagawa M, Kagiyama M, Shibata N, Hirano Y, Hakoshima T. Genes Cells 19 386-404 (2014)
  62. Spatio-temporal Aspects of Ca2+ Signalling: Lessons from Guard Cells and Pollen Tubes. Konrad KR, Maierhofer T, Hedrich R. J Exp Bot (2018)
  63. Ectopic Expression of OsPYL/RCAR7, an ABA Receptor Having Low Signaling Activity, Improves Drought Tolerance without Growth Defects in Rice. Bhatnagar N, Kim R, Han S, Song J, Lee GS, Lee S, Min MK, Kim BG. Int J Mol Sci 21 E4163 (2020)
  64. Increasing freezing tolerance: kinase regulation of ICE1. Zhan X, Zhu JK, Lang Z. Dev Cell 32 257-258 (2015)
  65. Search for Partner Proteins of A. thaliana Immunophilins Involved in the Control of Plant Immunity. Abdeeva IA, Pogorelko GV, Maloshenok LG, Mokrykova MV, Fursova OV, Bruskin SA. Molecules 23 E953 (2018)
  66. The selectivity of 6-nor-ABA and 7'-nor-ABA for abscisic acid receptor subtypes. Takeuchi J, Ohnishi T, Okamoto M, Todoroki Y. Bioorg Med Chem Lett 25 3507-3510 (2015)
  67. BPL3 binds the long non-coding RNA nalncFL7 to suppress FORKED-LIKE7 and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. Ai G, Li T, Zhu H, Dong X, Fu X, Xia C, Pan W, Jing M, Shen D, Xia A, Tyler BM, Dou D. Plant Cell 35 598-616 (2023)
  68. Conformationally restricted 3'-modified ABA analogs for controlling ABA receptors. Takeuchi J, Ohnishi T, Okamoto M, Todoroki Y. Org Biomol Chem 13 4278-4288 (2015)
  69. Genome-wide biochemical analysis of Arabidopsis protein phosphatase using a wheat cell-free system. Takahashi H, Ozawa A, Nemoto K, Nozawa A, Seki M, Shinozaki K, Takeda H, Endo Y, Sawasaki T. FEBS Lett 586 3134-3141 (2012)
  70. Integrative Identification of Crucial Genes Associated With Plant Hormone-Mediated Bud Dormancy in Prunus mume. Li P, Zheng T, Zhang Z, Liu W, Qiu L, Wang J, Cheng T, Zhang Q. Front Genet 12 698598 (2021)
  71. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Rigoulot SB, Petzold HE, Williams SP, Brunner AM, Beers EP. Plant Mol Biol 100 303-317 (2019)
  72. Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1. Ren Z, Wang Z, Zhou XE, Shi H, Hong Y, Cao M, Chan Z, Liu X, Xu HE, Zhu JK. Sci Rep 7 14022 (2017)
  73. Synthesis, resolution and biological evaluation of cyclopropyl analogs of abscisic acid. Han X, Fan J, Lu H, Wan C, Li X, Li H, Yang D, Zhang Y, Xiao Y, Qin Z. Bioorg Med Chem 23 6210-6217 (2015)
  74. Abscisic Acid Receptors Modulate Metabolite Levels and Phenotype in Arabidopsis Under Normal Growing Conditions. Li X, Wu L, Qiu Y, Wang T, Zhou Q, Zhang Q, Zhang W, Liu Z. Metabolites 9 E249 (2019)
  75. Genome-Wide Identification of the ABA Receptors Genes and Their Response to Abiotic Stress in Apple. Hou H, Lv L, Huo H, Dai H, Zhang Y. Plants (Basel) 9 E1028 (2020)
  76. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: Interaction of Fra a 1 proteins and FaAP. Franz-Oberdorf K, Langer A, Strasser R, Isono E, Ranftl QL, Wunschel C, Schwab W. Proteins 85 1891-1901 (2017)
  77. ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. Lim CW, Lee SC. Front Plant Sci 11 587620 (2020)
  78. AmCBF1 Transcription Factor Regulates Plant Architecture by Repressing GhPP2C1 or GhPP2C2 in Gossypium hirsutum. Lu J, Wang L, Zhang Q, Ma C, Su X, Cheng H, Guo H. Front Plant Sci 13 914206 (2022)
  79. Enzyme That Makes You Cry-Crystal Structure of Lachrymatory Factor Synthase from Allium cepa. Silvaroli JA, Pleshinger MJ, Banerjee S, Kiser PD, Golczak M. ACS Chem Biol 12 2296-2304 (2017)
  80. Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Li Z, Lian Y, Gong P, Song L, Hu J, Pang H, Ren Y, Xin Z, Wang Z, Lin T. Ann Bot 130 717-735 (2022)
  81. Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato (Solanum lycopersicum) as Revealed by Shotgun Proteomic Analysis. Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D, Lonsdale A, Abadía A, Doblin MS, Bacic A, Uemura M, Abadía J, López-Millán AF. Int J Mol Sci 21 E8863 (2020)
  82. Hormone signalling: ABA has a breakdown. Lozano-Juste J, Cutler SR. Nat Plants 2 16137 (2016)
  83. Molecular mechanisms in the selective basal activation of pyrabactin receptor 1: Comparative analysis of mutants. Dorosh L, Rajagopalan N, Loewen MC, Stepanova M. FEBS Open Bio 4 496-509 (2014)
  84. Plant signaling: abscisic acid receptor hole-in-one. Hayashi K, Kinoshita T. Nat Chem Biol 10 414-415 (2014)
  85. Reinforcement of guest selectivity through the self-assembly of host molecules: selective recognition of lithium ions by dimerizable tricarboxylic acids. Minodani S, Owaki M, Sano S, Tsuzuki S, Yamanaka M. Chem Commun (Camb) 51 12920-12923 (2015)
  86. Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought. Lozano-Juste J, Infantes L, Garcia-Maquilon I, Ruiz-Partida R, Merilo E, Benavente JL, Velazquez-Campoy A, Coego A, Bono M, Forment J, Pampín B, Destito P, Monteiro A, Rodríguez R, Cruces J, Rodriguez PL, Albert A. Sci Adv 9 eade9948 (2023)
  87. Synthesis of All Stereoisomers of RK460 and Evaluation of Their Activity and Selectivity as Abscisic Acid Receptor Antagonists. Mikame Y, Yoshida K, Hashizume D, Hirai G, Nagasawa K, Osada H, Sodeoka M. Chemistry 25 3496-3500 (2019)
  88. The inhibitory mechanism of aurintricarboxylic acid targeting serine/threonine phosphatase Stp1 in Staphylococcus aureus: insights from molecular dynamics simulations. Liu TT, Yang T, Gao MN, Chen KX, Yang S, Yu KQ, Jiang HL. Acta Pharmacol Sin 40 850-858 (2019)
  89. Two-electrode Voltage-clamp Recordings in Xenopus laevis Oocytes: Reconstitution of Abscisic Acid Activation of SLAC1 Anion Channel via PYL9 ABA Receptor. Wang C, Zhang J, Schroeder JI. Bio Protoc 7 2114 (2017)
  90. Association Analysis Revealed That TaPYL4 Genes Are Linked to Plant Growth Related Traits in Multiple Environment. Xue Y, Wang J, Mao X, Li C, Li L, Yang X, Hao C, Chang X, Li R, Jing R. Front Plant Sci 12 641087 (2021)
  91. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat. Liu Y, Yu TF, Li YT, Zheng L, Lu ZW, Zhou YB, Chen J, Chen M, Zhang JP, Sun GZ, Cao XY, Liu YW, Ma YZ, Xu ZS. New Phytol 236 114-131 (2022)
  92. Solution NMR structure of CGL2373, a polyketide cyclase-like protein from Corynebacterium glutamicum. Cai C, Nie Y, Gong Y, Li S, Ramelot TA, Kennedy MA, Yue X, Zhu J, Liu M, Yang Y. Proteins 88 237-241 (2020)
  93. Toward Development of Fluorescence-Quenching-Based Biosensors for Drought Stress in Plants. Sharmah A, Kraus M, Cutler SR, Siegel JB, Brady SM, Guo T. Anal Chem 91 15644-15651 (2019)
  94. Toward a better understanding of signaling networks in plants: yeast has the power! Dubeaux G, Schroeder JI. EMBO J 38 e102478 (2019)
  95. Transcriptome and Metabolome Comparison of Smooth and Rough Citrus limon L. Peels Grown on Same Trees and Harvested in Different Seasons. Liu HM, Long CR, Wang SH, Fu XM, Zhou XY, Mao JM, Yang HX, Du YX, Li JX, Yue JQ, Hu FG. Front Plant Sci 12 749803 (2021)
  96. A Modified Yeast Two-Hybrid Platform Enables Dynamic Control of Expression Intensities to Unmask Properties of Protein-Protein Interactions. Feuer E, Zimran G, Shpilman M, Mosquna A. ACS Synth Biol 11 2589-2598 (2022)
  97. A Potential ABA Analog to Increase Drought Tolerance in Arabidopsis thaliana. Liu R, Liang G, Gong J, Wang J, Zhang Y, Hao Z, Li G. Int J Mol Sci 24 8783 (2023)
  98. A clathrin-related protein FaRRP1/SCD2 integrates ABA trafficking and signaling to regulate strawberry fruit ripening. Li J, Shen Y. J Biol Chem 299 105250 (2023)
  99. ABA signaling components in Phelipanche aegyptiaca. Wiseglass G, Pri-Tal O, Mosquna A. Sci Rep 9 6476 (2019)
  100. Comparative Analysis of the PYL Gene Family in Three Ipomoea Species and the Expression Profiling of IbPYL Genes during Abiotic Stress Response in Sweetpotato. Zhang L, Song W, Xin G, Zhu M, Meng X. Genes (Basel) 14 1471 (2023)
  101. Crystallization and preliminary X-ray diffraction studies of the abscisic acid receptor PYL3 and its complex with pyrabactin. Zhang X, Wu W, Chen Z. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 479-482 (2012)
  102. GhPYL9-5D and GhPYR1-3 A positively regulate Arabidopsis and cotton responses to ABA, drought, high salinity and osmotic stress. Wang Y, Zhang G, Zhou H, Yin S, Li Y, Ma C, Chen P, Sun L, Hao F. BMC Plant Biol 23 310 (2023)
  103. Insights into the Genes Involved in ABA Biosynthesis and Perception during Development and Ripening of the Chilean Strawberry Fruit. Moya-León MA, Stappung Y, Mattus-Araya E, Herrera R. Int J Mol Sci 24 8531 (2023)
  104. Investment in plant research and development bears fruit in China. Chong K, Xu Z. Plant Cell Rep 33 541-550 (2014)
  105. MKK3 Cascade Regulates Seed Dormancy Through a Negative Feedback Loop Modulating ABA Signal in Rice. Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C, Liu Q. Rice (N Y) 17 2 (2024)
  106. Potent ABA-independent activation of engineered PYL3. Wang Y, Feng C, Wu X, Lu W, Zhang X, Zhang X. FEBS Open Bio 11 1428-1439 (2021)
  107. Reconstitution of phytochrome A-mediated light modulation of the ABA signaling pathways in yeast. Li H, Zhou Y, Qin X, Peng J, Han R, Lv Y, Li C, Qi L, Qu GP, Yang L, Li Y, Terzaghi W, Li Z, Qin F, Gong Z, Deng XW, Li J. Proc Natl Acad Sci U S A 120 e2302901120 (2023)
  108. Structure-Based Modulation of the Ligand Sensitivity of a Tomato Dimeric Abscisic Acid Receptor Through a Glu to Asp Mutation in the Latch Loop. Infantes L, Rivera-Moreno M, Daniel-Mozo M, Benavente JL, Ocaña-Cuesta J, Coego A, Lozano-Juste J, Rodriguez PL, Albert A. Front Plant Sci 13 884029 (2022)
  109. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor. You Z, Guo S, Li Q, Fang Y, Huang P, Ju C, Wang C. Nat Commun 14 5886 (2023)