3rce Citations

X-ray structure of a bacterial oligosaccharyltransferase.

Nature 474 350-5 (2011)
Cited: 172 times
EuropePMC logo PMID: 21677752


Asparagine-linked glycosylation is a post-translational modification of proteins containing the conserved sequence motif Asn-X-Ser/Thr. The attachment of oligosaccharides is implicated in diverse processes such as protein folding and quality control, organism development or host-pathogen interactions. The reaction is catalysed by oligosaccharyltransferase (OST), a membrane protein complex located in the endoplasmic reticulum. The central, catalytic enzyme of OST is the STT3 subunit, which has homologues in bacteria and archaea. Here we report the X-ray structure of a bacterial OST, the PglB protein of Campylobacter lari, in complex with an acceptor peptide. The structure defines the fold of STT3 proteins and provides insight into glycosylation sequon recognition and amide nitrogen activation, both of which are prerequisites for the formation of the N-glycosidic linkage. We also identified and validated catalytically important, acidic amino acid residues. Our results provide the molecular basis for understanding the mechanism of N-linked glycosylation.

Reviews - 3rce mentioned but not cited (3)

  1. Structural basis for catalysis at the membrane-water interface. Dufrisne MB, Petrou VI, Clarke OB, Mancia F. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1368-1385 (2017)
  2. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context. Cote JM, Taylor EA. Int J Mol Sci 18 (2017)
  3. Advances in understanding glycosyltransferases from a structural perspective. Gloster TM. Curr. Opin. Struct. Biol. 28 131-141 (2014)

Articles - 3rce mentioned but not cited (18)

  1. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Matsumoto S, Shimada A, Nyirenda J, Igura M, Kawano Y, Kohda D. Proc. Natl. Acad. Sci. U.S.A. 110 17868-17873 (2013)
  2. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. Gerber S, Lizak C, Michaud G, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. J. Biol. Chem. 288 8849-8861 (2013)
  3. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. Shrimal S, Trueman SF, Gilmore R. J. Cell Biol. 201 81-95 (2013)
  4. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB. Ihssen J, Kowarik M, Wiesli L, Reiss R, Wacker M, Thöny-Meyer L. BMC Biotechnol. 12 67 (2012)
  5. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering. Ihssen J, Haas J, Kowarik M, Wiesli L, Wacker M, Schwede T, Thöny-Meyer L. Open Biol 5 140227 (2015)
  6. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB. Lizak C, Gerber S, Zinne D, Michaud G, Schubert M, Chen F, Bucher M, Darbre T, Zenobi R, Reymond JL, Locher KP. J. Biol. Chem. 289 735-746 (2014)
  7. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Ollis AA, Zhang S, Fisher AC, DeLisa MP. Nat. Chem. Biol. 10 816-822 (2014)
  8. The middle X residue influences cotranslational N-glycosylation consensus site skipping. Malaby HL, Kobertz WR. Biochemistry 53 4884-4893 (2014)
  9. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. Silverman JM, Imperiali B. J. Biol. Chem. 291 22001-22010 (2016)
  10. Lipid-linked oligosaccharides in membranes sample conformations that facilitate binding to oligosaccharyltransferase. Kern NR, Lee HS, Wu EL, Park S, Vanommeslaeghe K, MacKerell AD, Klauda JB, Jo S, Im W. Biophys. J. 107 1885-1895 (2014)
  11. Substitute sweeteners: diverse bacterial oligosaccharyltransferases with unique N-glycosylation site preferences. Ollis AA, Chai Y, Natarajan A, Perregaux E, Jaroentomeechai T, Guarino C, Smith J, Zhang S, DeLisa MP. Sci Rep 5 15237 (2015)
  12. Optimized protocol for expression and purification of membrane-bound PglB, a bacterial oligosaccharyl transferase. Jaffee MB, Imperiali B. Protein Expr. Purif. 89 241-250 (2013)
  13. Eukaryotic N-glycosylation occurs via the membrane-anchored C-terminal domain of the Stt3p subunit of oligosaccharyltransferase. Huang C, Bhaskaran R, Mohanty S. J. Biol. Chem. 287 32450-32458 (2012)
  14. Probing Polytopic Membrane Protein-Substrate Interactions by Luminescence Resonance Energy Transfer. Musial-Siwek M, Jaffee MB, Imperiali B. J. Am. Chem. Soc. 138 3806-3812 (2016)
  15. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA. Glycobiology 26 286-300 (2016)
  16. Transmembrane Motions of PglB Induced by LLO are Coupled with EL5 Loop Conformational Changes Necessary for OST Activity. Sun Lee H, Im W. Glycobiology (2017)
  17. Role of epaQ, a Previously Uncharacterized Enterococcus faecalis Gene, in Biofilm Development and Antimicrobial Resistance. Korir ML, Dale JL, Dunny GM. J. Bacteriol. 201 (2019)
  18. Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni. De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. J. Med. Chem. 60 2099-2118 (2017)

Reviews citing this publication (46)

  1. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Shrimal S, Gilmore R. Glycobiology 29 288-297 (2019)
  2. Recent advances in the production of recombinant glycoconjugate vaccines. Kay E, Cuccui J, Wren BW. NPJ Vaccines 4 16 (2019)
  3. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Allen KN, Imperiali B. Curr. Opin. Struct. Biol. 59 81-90 (2019)
  4. Chemoenzymatic Methods for the Synthesis of Glycoproteins. Li C, Wang LX. Chem. Rev. 118 8359-8413 (2018)
  5. Emerging facets of prokaryotic glycosylation. Schäffer C, Messner P. FEMS Microbiol. Rev. 41 49-91 (2017)
  6. Sweet New Roles for Protein Glycosylation in Prokaryotes. Eichler J, Koomey M. Trends Microbiol. 25 662-672 (2017)
  7. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation. Liu C, Szostak M. Chemistry 23 7157-7173 (2017)
  8. Understanding protein glycosylation pathways in bacteria. Li H, Debowski AW, Liao T, Tang H, Nilsson HO, Marshall BJ, Stubbs KA, Benghezal M. Future Microbiol 12 59-72 (2017)
  9. Co- and Post-Translational Protein Folding in the ER. Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Traffic 17 615-638 (2016)
  10. Glycosylation Quality Control by the Golgi Structure. Zhang X, Wang Y. J. Mol. Biol. 428 3183-3193 (2016)
  11. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Thaysen-Andersen M, Packer NH, Schulz BL. Mol. Cell Proteomics 15 1773-1790 (2016)
  12. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Zacchi LF, Schulz BL. Glycoconj. J. 33 359-376 (2016)
  13. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Cherepanova N, Shrimal S, Gilmore R. Curr. Opin. Cell Biol. 41 57-65 (2016)
  14. Protein O-mannosylation in the early secretory pathway. Neubert P, Strahl S. Curr. Opin. Cell Biol. 41 100-108 (2016)
  15. The conformational plasticity of glycosyltransferases. Albesa-Jové D, Guerin ME. Curr. Opin. Struct. Biol. 40 23-32 (2016)
  16. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Krasnova L, Wong CH. Annu. Rev. Biochem. 85 599-630 (2016)
  17. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Shrimal S, Cherepanova NA, Gilmore R. Semin. Cell Dev. Biol. 41 71-78 (2015)
  18. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation. Samuelson J, Robbins PW. Semin. Cell Dev. Biol. 41 121-128 (2015)
  19. Generation and degradation of free asparagine-linked glycans. Harada Y, Hirayama H, Suzuki T. Cell. Mol. Life Sci. 72 2509-2533 (2015)
  20. Glycosylation-directed quality control of protein folding. Xu C, Ng DT. Nat. Rev. Mol. Cell Biol. 16 742-752 (2015)
  21. Glycosyltransferases: mechanisms and applications in natural product development. Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Chem Soc Rev 44 8350-8374 (2015)
  22. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins. Cuccui J, Wren B. J. Pharm. Pharmacol. 67 338-350 (2015)
  23. Structural Symmetry in Membrane Proteins. Forrest LR. Annu Rev Biophys 44 311-337 (2015)
  24. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Tan FY, Tang CM, Exley RM. Trends Biochem. Sci. 40 342-350 (2015)
  25. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Wang LX, Amin MN. Chem. Biol. 21 51-66 (2014)
  26. Escherichia coli as a glycoprotein production host: recent developments and challenges. Jaffé SR, Strutton B, Levarski Z, Pandhal J, Wright PC. Curr. Opin. Biotechnol. 30 205-210 (2014)
  27. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. Microbiol. Mol. Biol. Rev. 78 304-341 (2014)
  28. Protein transport into the human ER and related diseases, Sec61-channelopathies. Haßdenteufel S, Klein MC, Melnyk A, Zimmermann R. Biochem. Cell Biol. 92 499-509 (2014)
  29. Structure-function relationships of membrane-associated GT-B glycosyltransferases. Albesa-Jové D, Giganti D, Jackson M, Alzari PM, Guerin ME. Glycobiology 24 108-124 (2014)
  30. The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Tytgat HL, Lebeer S. Microbiol. Mol. Biol. Rev. 78 372-417 (2014)
  31. Bacterial cell-envelope glycoconjugates. Messner P, Schäffer C, Kosma P. Adv Carbohydr Chem Biochem 69 209-272 (2013)
  32. Bacterial protein N-glycosylation: new perspectives and applications. Nothaft H, Szymanski CM. J. Biol. Chem. 288 6912-6920 (2013)
  33. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Unverzagt C, Kajihara Y. Chem Soc Rev 42 4408-4420 (2013)
  34. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Baker JL, Çelik E, DeLisa MP. Trends Biotechnol. 31 313-323 (2013)
  35. Extreme sweetness: protein glycosylation in archaea. Eichler J. Nat. Rev. Microbiol. 11 151-156 (2013)
  36. Glycans-by-design: engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Merritt JH, Ollis AA, Fisher AC, DeLisa MP. Biotechnol. Bioeng. 110 1550-1564 (2013)
  37. Hot and sweet: protein glycosylation in Crenarchaeota. Meyer BH, Albers SV. Biochem. Soc. Trans. 41 384-392 (2013)
  38. N-linked protein glycosylation in the ER. Aebi M. Biochim. Biophys. Acta 1833 2430-2437 (2013)
  39. N-linked protein glycosylation in the endoplasmic reticulum. Breitling J, Aebi M. Cold Spring Harb Perspect Biol 5 a013359 (2013)
  40. Protein O-mannosylation: what we have learned from baker's yeast. Loibl M, Strahl S. Biochim. Biophys. Acta 1833 2438-2446 (2013)
  41. Protein secretion and the endoplasmic reticulum. Benham AM. Cold Spring Harb Perspect Biol 4 a012872 (2012)
  42. Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW. J. Med. Microbiol. 61 919-926 (2012)
  43. Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Hurtado-Guerrero R, Davies GJ. Curr Opin Chem Biol 16 479-487 (2012)
  44. Recent structures, evolution and mechanisms of glycosyltransferases. Breton C, Fournel-Gigleux S, Palcic MM. Curr. Opin. Struct. Biol. 22 540-549 (2012)
  45. Structural perspective of peptidoglycan biosynthesis and assembly. Lovering AL, Safadi SS, Strynadka NC. Annu. Rev. Biochem. 81 451-478 (2012)
  46. Vertebrate protein glycosylation: diversity, synthesis and function. Moremen KW, Tiemeyer M, Nairn AV. Nat. Rev. Mol. Cell Biol. 13 448-462 (2012)

Articles citing this publication (105)

  1. SEDS proteins are a widespread family of bacterial cell wall polymerases. Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ. Nature 537 634-638 (2016)
  2. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. Nature 535 159-163 (2016)
  3. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP. Nat. Chem. Biol. 8 434-436 (2012)
  4. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. Nature 524 433-438 (2015)
  5. Adaptive immune activation: glycosylation does matter. Wolfert MA, Boons GJ. Nat. Chem. Biol. 9 776-784 (2013)
  6. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F. Nat Commun 5 3072 (2014)
  7. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M, Glockshuber R. Structure 22 590-601 (2014)
  8. Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea. Kaminski L, Lurie-Weinberger MN, Allers T, Gophna U, Eichler J. Mol. Phylogenet. Evol. 68 327-339 (2013)
  9. C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Buettner FF, Ashikov A, Tiemann B, Lehle L, Bakker H. Mol. Cell 50 295-302 (2013)
  10. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Lee HS, Qi Y, Im W. Sci Rep 5 8926 (2015)
  11. Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. Schwarz F, Fan YY, Schubert M, Aebi M. J. Biol. Chem. 286 35267-35274 (2011)
  12. Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli. Naegeli A, Neupert C, Fan YY, Lin CW, Poljak K, Papini AM, Schwarz F, Aebi M. J. Biol. Chem. 289 2170-2179 (2014)
  13. The unfolded protein response supports cellular robustness as a broad-spectrum compensatory pathway. Thibault G, Ismail N, Ng DT. Proc. Natl. Acad. Sci. U.S.A. 108 20597-20602 (2011)
  14. Characterization of the structurally diverse N-linked glycans of Campylobacter species. Jervis AJ, Butler JA, Lawson AJ, Langdon R, Wren BW, Linton D. J. Bacteriol. 194 2355-2362 (2012)
  15. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. Cherepanova NA, Shrimal S, Gilmore R. J. Cell Biol. 206 525-539 (2014)
  16. Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Özcelik D, Barandun J, Schmitz N, Sutter M, Guth E, Damberger FF, Allain FH, Ban N, Weber-Ban E. Nat Commun 3 1014 (2012)
  17. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Larkin A, Chang MM, Whitworth GE, Imperiali B. Nat. Chem. Biol. 9 367-373 (2013)
  18. Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases. Jaffee MB, Imperiali B. Biochemistry 50 7557-7567 (2011)
  19. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. Chen CI, Keusch JJ, Klein D, Hess D, Hofsteenge J, Gut H. EMBO J. 31 3183-3197 (2012)
  20. Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates. Schulz BL, Jen FE, Power PM, Jones CE, Fox KL, Ku SC, Blanchfield JT, Jennings MP. PLoS ONE 8 e62768 (2013)
  21. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, Zhu G, Sun C, Li T, Li D, Zhang X, Zhou M, Huang Y. Nat. Struct. Mol. Biol. 24 469-474 (2017)
  22. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F. Science 351 608-612 (2016)
  23. A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Guarino C, DeLisa MP. Glycobiology 22 596-601 (2012)
  24. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. Harada Y, Buser R, Ngwa EM, Hirayama H, Aebi M, Suzuki T. J. Biol. Chem. 288 32673-32684 (2013)
  25. Glycosylation of closely spaced acceptor sites in human glycoproteins. Shrimal S, Gilmore R. J. Cell. Sci. 126 5513-5523 (2013)
  26. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Kämpf MM, Braun M, Sirena D, Ihssen J, Thöny-Meyer L, Ren Q. Microb. Cell Fact. 14 12 (2015)
  27. Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Lizak C, Gerber S, Michaud G, Schubert M, Fan YY, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. Nat Commun 4 2627 (2013)
  28. Identification of salivary N-glycoproteins and measurement of glycosylation site occupancy by boronate glycoprotein enrichment and liquid chromatography/electrospray ionization tandem mass spectrometry. Xu Y, Bailey UM, Punyadeera C, Schulz BL. Rapid Commun. Mass Spectrom. 28 471-482 (2014)
  29. The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Ruan X, Loyola DE, Marolda CL, Perez-Donoso JM, Valvano MA. Glycobiology 22 288-299 (2012)
  30. A conserved acidic motif is crucial for enzymatic activity of protein O-mannosyltransferases. Lommel M, Schott A, Jank T, Hofmann V, Strahl S. J. Biol. Chem. 286 39768-39775 (2011)
  31. Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae. Neubert P, Halim A, Zauser M, Essig A, Joshi HJ, Zatorska E, Larsen IS, Loibl M, Castells-Ballester J, Aebi M, Clausen H, Strahl S. Mol. Cell Proteomics 15 1323-1337 (2016)
  32. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Garcia-Quintanilla F, Iwashkiw JA, Price NL, Stratilo C, Feldman MF. Front Microbiol 5 381 (2014)
  33. Substrate specificity of cytoplasmic N-glycosyltransferase. Naegeli A, Michaud G, Schubert M, Lin CW, Lizak C, Darbre T, Reymond JL, Aebi M. J. Biol. Chem. 289 24521-24532 (2014)
  34. The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Izquierdo L, Mehlert A, Ferguson MA. Glycobiology 22 696-703 (2012)
  35. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Nyirenda J, Matsumoto S, Saitoh T, Maita N, Noda NN, Inagaki F, Kohda D. Structure 21 32-41 (2013)
  36. Synthesis of glycans and glycopolymers through engineered enzymes. Armstrong Z, Withers SG. Biopolymers 99 666-674 (2013)
  37. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases. Matsumoto S, Shimada A, Kohda D. BMC Struct. Biol. 13 11 (2013)
  38. In vitro activity of Neisseria meningitidis PglL O-oligosaccharyltransferase with diverse synthetic lipid donors and a UDP-activated sugar. Musumeci MA, Hug I, Scott NE, Ielmini MV, Foster LJ, Wang PG, Feldman MF. J. Biol. Chem. 288 10578-10587 (2013)
  39. Shifting Native Chemical Ligation into Reverse through N→S Acyl Transfer. Macmillan D, Adams A, Premdjee B. Isr. J. Chem. 51 885-899 (2011)
  40. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP. Science 359 545-550 (2018)
  41. Substrate promiscuity: AglB, the archaeal oligosaccharyltransferase, can process a variety of lipid-linked glycans. Cohen-Rosenzweig C, Guan Z, Shaanan B, Eichler J. Appl. Environ. Microbiol. 80 486-496 (2014)
  42. AglB, catalyzing the oligosaccharyl transferase step of the archaeal N-glycosylation process, is essential in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Meyer BH, Albers SV. Microbiologyopen 3 531-543 (2014)
  43. Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation. Taguchi Y, Fujinami D, Kohda D. J. Biol. Chem. 291 11042-11054 (2016)
  44. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Napiórkowska M, Boilevin J, Sovdat T, Darbre T, Reymond JL, Aebi M, Locher KP. Nat. Struct. Mol. Biol. 24 1100-1106 (2017)
  45. SWATH-MS Glycoproteomics Reveals Consequences of Defects in the Glycosylation Machinery. Zacchi LF, Schulz BL. Mol. Cell Proteomics 15 2435-2447 (2016)
  46. Decorating proteins with "sweets" is a flexible matter. Wei Z, Zhang M. Structure 21 1-2 (2013)
  47. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus. Chang MM, Imperiali B, Eichler J, Guan Z. PLoS ONE 10 e0130482 (2015)
  48. Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S. J. Biol. Chem. 289 8599-8611 (2014)
  49. Proteoform Profile Mapping of the Human Serum Complement Component C9 Revealing Unexpected New Features of N-, O-, and C-Glycosylation. Franc V, Yang Y, Heck AJ. Anal. Chem. 89 3483-3491 (2017)
  50. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Science 360 215-219 (2018)
  51. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Schoborg JA, Hershewe JM, Stark JC, Kightlinger W, Kath JE, Jaroentomeechai T, Natarajan A, DeLisa MP, Jewett MC. Biotechnol. Bioeng. 115 739-750 (2018)
  52. Mixed disulfide formation in vitro between a glycoprotein substrate and yeast oligosaccharyltransferase subunits Ost3p and Ost6p. Mohd Yusuf SN, Bailey UM, Tan NY, Jamaluddin MF, Schulz BL. Biochem. Biophys. Res. Commun. 432 438-443 (2013)
  53. OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation. Dumax-Vorzet A, Roboti P, High S. J. Cell. Sci. 126 2595-2606 (2013)
  54. Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Yu H, Takeuchi H, Takeuchi M, Liu Q, Kantharia J, Haltiwanger RS, Li H. Nat. Chem. Biol. 12 735-740 (2016)
  55. Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Ramírez AS, Boilevin J, Biswas R, Gan BH, Janser D, Aebi M, Darbre T, Reymond JL, Locher KP. Glycobiology 27 525-535 (2017)
  56. Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core. Lukose V, Luo L, Kozakov D, Vajda S, Allen KN, Imperiali B. Biochemistry 54 7326-7334 (2015)
  57. Oligosaccharyltransferase subunits bind polypeptide substrate to locally enhance N-glycosylation. Jamaluddin MF, Bailey UM, Schulz BL. Mol. Cell Proteomics 13 3286-3293 (2014)
  58. Structure of the branched intermediate in protein splicing. Liu Z, Frutos S, Bick MJ, Vila-Perelló M, Debelouchina GT, Darst SA, Muir TW. Proc. Natl. Acad. Sci. U.S.A. 111 8422-8427 (2014)
  59. Co-translational processing of glycoprotein 3 from equine arteritis virus: N-glycosylation adjacent to the signal peptide prevents cleavage. Matczuk AK, Kunec D, Veit M. J. Biol. Chem. 288 35396-35405 (2013)
  60. Molecular determinants of co- and post-translational N-glycosylation of type I transmembrane peptides. Malaby HL, Kobertz WR. Biochem. J. 453 427-434 (2013)
  61. Quantitative Glycomics: A Combined Analytical and Bioinformatics Approach. Veillon L, Zhou S, Mechref Y. Meth. Enzymol. 585 431-477 (2017)
  62. Sequence-based protein stabilization in the absence of glycosylation. Tan NY, Bailey UM, Jamaluddin MF, Mahmud SH, Raman SC, Schulz BL. Nat Commun 5 3099 (2014)
  63. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, Mrksich M, Jewett MC, DeLisa MP. Nat Commun 9 2686 (2018)
  64. Comment Structural biology: Porthole to catalysis. Gilmore R. Nature 474 292-293 (2011)
  65. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Bai L, Wang T, Zhao G, Kovach A, Li H. Nature 555 328-333 (2018)
  66. DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon. Shrimal S, Cherepanova NA, Gilmore R. J. Cell Biol. 216 3625-3638 (2017)
  67. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria. Mills DC, Jervis AJ, Abouelhadid S, Yates LE, Cuccui J, Linton D, Wren BW. Glycobiology 26 398-409 (2016)
  68. Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Perez C, Köhler M, Janser D, Pardon E, Steyaert J, Zenobi R, Locher KP. Sci Rep 7 46641 (2017)
  69. Total Biosynthesis of Legionaminic Acid, a Bacterial Sialic Acid Analogue. Hassan MI, Lundgren BR, Chaumun M, Whitfield DM, Clark B, Schoenhofen IC, Boddy CN. Angew. Chem. Int. Ed. Engl. 55 12018-12021 (2016)
  70. A novel and simple method of production and biophysical characterization of a mini-membrane protein, Ost4p: a subunit of yeast oligosaccharyl transferase. Kumar A, Ward P, Katre UV, Mohanty S. Biopolymers 97 499-507 (2012)
  71. Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Poljak K, Selevsek N, Ngwa E, Grossmann J, Losfeld ME, Aebi M. Mol. Cell Proteomics 17 18-30 (2018)
  72. Rational design of crystal contact-free space in protein crystals for analyzing spatial distribution of motions within protein molecules. Matsuoka R, Shimada A, Komuro Y, Sugita Y, Kohda D. Protein Sci. 25 754-768 (2016)
  73. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities. Jinnelov A, Ali L, Tinti M, Güther MLS, Ferguson MAJ. J. Biol. Chem. 292 20328-20341 (2017)
  74. A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni. Barre Y, Nothaft H, Thomas C, Liu X, Li J, Ng KKS, Szymanski CM. Glycobiology 27 978-989 (2017)
  75. Analysis of substrate specificity of Trypanosoma brucei oligosaccharyltransferases (OSTs) by functional expression of domain-swapped chimeras in yeast. Poljak K, Breitling J, Gauss R, Rugarabamu G, Pellanda M, Aebi M. J. Biol. Chem. 292 20342-20352 (2017)
  76. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p. Bailey UM, Schulz BL. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 923-924 16-21 (2013)
  77. Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. Rinis N, Golden JE, Marceau CD, Carette JE, Van Zandt MC, Gilmore R, Contessa JN. Cell Chem Biol 25 1231-1241.e4 (2018)
  78. In silico Investigation of the PglB Active Site Reveals Transient Catalytic States and Octahedral Metal Ion Coordination. Pedebos C, Arantes PR, Giesel GM, Verli H. Glycobiology 25 1183-1195 (2015)
  79. One flexible loop in OST lassos both substrates. Shrimal S, Cherepanova NA, Gilmore R. Nat. Struct. Mol. Biol. 24 1009-1010 (2017)
  80. Refined topology model of the STT3/Stt3 protein subunit of the oligosaccharyltransferase complex. Lara P, Öjemalm K, Reithinger J, Holgado A, Maojun Y, Hammed A, Mattle D, Kim H, Nilsson I. J. Biol. Chem. 292 11349-11360 (2017)
  81. Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P. Krafczyk R, Macošek J, Jagtap PKA, Gast D, Wunder S, Mitra P, Jha AK, Rohr J, Hoffmann-Röder A, Jung K, Hennig J, Lassak J. MBio 8 (2017)
  82. Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP. Sengoku T, Suzuki T, Dohmae N, Watanabe C, Honma T, Hikida Y, Yamaguchi Y, Takahashi H, Yokoyama S, Yanagisawa T. Nat. Chem. Biol. 14 368-374 (2018)
  83. The essential endoplasmic reticulum chaperone Rot1 is required for protein N- and O-glycosylation in yeast. Pasikowska M, Palamarczyk G, Lehle L. Glycobiology 22 939-947 (2012)
  84. A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds. Song H, van der Velden NS, Shiran SL, Bleiziffer P, Zach C, Sieber R, Imani AS, Krausbeck F, Aebi M, Freeman MF, Riniker S, Künzler M, Naismith JH. Sci Adv 4 eaat2720 (2018)
  85. Engineered genetic selection links in vivo protein folding and stability with asparagine-linked glycosylation. Mansell TJ, Guarino C, DeLisa MP. Biotechnol J 8 1445-1451 (2013)
  86. Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Jervis AJ, Wood AG, Cain JA, Butler JA, Frost H, Lord E, Langdon R, Cordwell SJ, Wren BW, Linton D. Glycobiology 28 233-244 (2018)
  87. Glycocodon theory--the first table of glycocodons. Nahalka J. J. Theor. Biol. 307 193-204 (2012)
  88. Membrane Interaction of the Glycosyltransferase WaaG. Liebau J, Pettersson P, Szpryngiel S, Mäler L. Biophys. J. 109 552-563 (2015)
  89. Missense mutations near the N-glycosylation site of the A2 domain lead to various intracellular trafficking defects in coagulation factor VIII. Wei W, Zheng C, Zhu M, Zhu X, Yang R, Misra S, Zhang B. Sci Rep 7 45033 (2017)
  90. N-Glycosylation with synthetic undecaprenyl pyrophosphate-linked oligosaccharide to oligopeptides by PglB oligosaccharyltransferase from Campylobacter jejuni. Ishiwata A, Taguchi Y, Lee YJ, Watanabe T, Kohda D, Ito Y. Chembiochem 16 731-737 (2015)
  91. Rapid nitrogen inversion pathway in the cis/trans isomerization of selenoxo peptide bonds. Huang Y, Jahreis G, Lücke C, Fischer G. Chemistry 19 1179-1183 (2013)
  92. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Napiórkowska M, Boilevin J, Darbre T, Reymond JL, Locher KP. Sci Rep 8 16297 (2018)
  93. Structure of the eukaryotic protein O-mannosyltransferase Pmt1-Pmt2 complex. Bai L, Kovach A, You Q, Kenny A, Li H. Nat. Struct. Mol. Biol. 26 704-711 (2019)
  94. The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. Miyazaki T, Yashiro H, Nishikawa A, Tonozuka T. J. Biochem. 157 225-234 (2015)
  95. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Shrimal S, Cherepanova NA, Mandon EC, Venev SV, Gilmore R. Mol. Biol. Cell 30 2626-2638 (2019)
  96. Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life-Similarities and Differences. Eichler J, Imperiali B. ACS Chem. Biol. 13 833-837 (2018)
  97. Crystal structures of green fluorescent protein with the unnatural amino acid 4-nitro-L-phenylalanine. Maurici N, Savidge N, Lee BU, Brewer SH, Phillips-Piro CM. Acta Crystallogr F Struct Biol Commun 74 650-655 (2018)
  98. Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases? V Komarov I, Yu Ishchenko A, Hovtvianitsa A, Stepanenko V, Kharchenko S, D Bond A, J Kirby A. Molecules 24 (2019)
  99. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli. Srichaisupakit A, Ohashi T, Fujiyama K. J. Biosci. Bioeng. 118 256-262 (2014)
  100. Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis. Lu H, Fermaintt CS, Cherepanova NA, Gilmore R, Yan N, Lehrman MA. Proc. Natl. Acad. Sci. U.S.A. 115 9557-9562 (2018)
  101. Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily. Albuquerque-Wendt A, Hütte HJ, Buettner FFR, Routier FH, Bakker H. Int J Mol Sci 20 (2019)
  102. More than 40 years of glycobiology in Regensburg. Tanner W, Lehle L. Biochem. Biophys. Res. Commun. 425 578-582 (2012)
  103. Structural Snapshots and Loop Dynamics along the Catalytic Cycle of Glycosyltransferase GpgS. Albesa-Jové D, Romero-García J, Sancho-Vaello E, Contreras FX, Rodrigo-Unzueta A, Comino N, Carreras-González A, Arrasate P, Urresti S, Biarnés X, Planas A, Guerin ME. Structure 25 1034-1044.e3 (2017)
  104. Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase. Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, Locher KP. Nat Commun 9 445 (2018)
  105. Two conserved oligosaccharyltransferase catalytic subunits required for N-glycosylation exist in Spartina alterniflora. Jiang L, Zhu X, Chen J, Yang D, Zhou C, Hong Z. Bot Stud 56 31 (2015)