3ps5 Citations

Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation.

J Cell Biochem 112 2062-71 (2011)
Cited: 53 times
EuropePMC logo PMID: 21465528

Abstract

SHP-1 belongs to the family of non-receptor protein tyrosine phosphatases (PTPs) and generally acts as a negative regulator in a variety of cellular signaling pathways. Previously, the crystal structures of the tail-truncated SHP-1 and SHP-2 revealed an autoinhibitory conformation. To understand the regulatory mechanism of SHP-1, we have determined the crystal structure of the full-length SHP-1 at 3.1 Å. Although the tail was disordered in current structure, the huge conformational rearrangement of the N-SH2 domain and the incorporation of sulfate ions into the ligand-binding site of each domain indicate that the SHP-1 is in the open conformation. The N-SH2 domain in current structure is shifted away from the active site of the PTP domain to the other side of the C-SH2 domain, resulting in exposure of the active site. Meanwhile, the C-SH2 domain is twisted anticlockwise by about 110°. In addition, a set of new interactions between two SH2 domains and between the N-SH2 and the catalytic domains is identified, which could be responsible for the stabilization of SHP-1 in the open conformation. Based on the structural comparison, a model for the activation of SHP-1 is proposed.

Articles - 3ps5 mentioned but not cited (14)

  1. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Collins BM, Davis MJ, Hancock JF, Parton RG. Dev Cell 23 11-20 (2012)
  2. Molecular mechanism of SHP2 activation by PD-1 stimulation. Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, Köhn M, Carlomagno T. Sci Adv 6 eaay4458 (2020)
  3. Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. LaRochelle JR, Fodor M, Vemulapalli V, Mohseni M, Wang P, Stams T, LaMarche MJ, Chopra R, Acker MG, Blacklow SC. Nat Commun 9 4508 (2018)
  4. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. Wang W, Liu L, Song X, Mo Y, Komma C, Bellamy HD, Zhao ZJ, Zhou GW. J Cell Biochem 112 2062-2071 (2011)
  5. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Pádua RAP, Sun Y, Marko I, Pitsawong W, Stiller JB, Otten R, Kern D. Nat Commun 9 4507 (2018)
  6. SHP-1 is a target of regorafenib in colorectal cancer. Fan LC, Teng HW, Shiau CW, Lin H, Hung MH, Chen YL, Huang JW, Tai WT, Yu HC, Chen KF. Oncotarget 5 6243-6251 (2014)
  7. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Saraswati S, Alhaider A, Abdelgadir AM, Tanwer P, Korashy HM. Cell Commun Signal 17 127 (2019)
  8. Structural interrogation of phosphoproteome identified by mass spectrometry reveals allowed and disallowed regions of phosphoconformation. Somavarapu AK, Balakrishnan S, Gautam AK, Palmer DS, Venkatraman P. BMC Struct Biol 14 9 (2014)
  9. Determination of the molecular reach of the protein tyrosine phosphatase SHP-1. Clemens L, Kutuzov M, Bayer KV, Goyette J, Allard J, Dushek O. Biophys J 120 2054-2066 (2021)
  10. Ethyl Gallate Dual-Targeting PTPN6 and PPARγ Shows Anti-Diabetic and Anti-Obese Effects. Ahn D, Kim J, Nam G, Zhao X, Kwon J, Hwang JY, Kim JK, Yoon SY, Chung SJ. Int J Mol Sci 23 5020 (2022)
  11. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Calligari P, Santucci V, Stella L, Bocchinfuso G. Comput Struct Biotechnol J 19 6125-6139 (2021)
  12. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  13. Experiment-guided molecular simulations define a heterogeneous structural ensemble for the PTPN11 tandem SH2 domains. Marasco M, Kirkpatrick J, Carlomagno T, Hub JS, Anselmi M. Chem Sci 14 5743-5755 (2023)
  14. Synthesis and Biological Evaluation of 3-Amino-4,4-Dimethyl Lithocholic Acid Derivatives as Novel, Selective, and Cellularly Active Allosteric SHP1 Activators. Chen H, Liu Z, Gao L, Yu LF, Zhou Y, Tang J, Li J, Yang F. Molecules 28 2488 (2023)


Reviews citing this publication (11)

  1. Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling. Kim M, Morales LD, Jang IS, Cho YY, Kim DJ. Int J Mol Sci 19 E2708 (2018)
  2. Shp1 function in myeloid cells. Abram CL, Lowell CA. J Leukoc Biol 102 657-675 (2017)
  3. Shp1 in Solid Cancers and Their Therapy. Varone A, Spano D, Corda D. Front Oncol 10 935 (2020)
  4. Downregulation of signal transducer and activator of transcription 3 by sorafenib: a novel mechanism for hepatocellular carcinoma therapy. Hung MH, Tai WT, Shiau CW, Chen KF. World J Gastroenterol 20 15269-15274 (2014)
  5. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Front Cell Dev Biol 8 608747 (2020)
  6. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. J Leukoc Biol 105 1261-1273 (2019)
  7. Role of inhibitory signaling in peripheral B cell tolerance. Getahun A. Immunol Rev 307 27-42 (2022)
  8. Immunoregulatory Property of C-Type Lectin-Like Receptors in Fibrosing Interstitial Lung Diseases. Effendi WI, Nagano T, Hasan H, Yudhawati R. Int J Mol Sci 21 E3665 (2020)
  9. Combination Approaches to Target PD-1 Signaling in Cancer. Moore EK, Strazza M, Mor A. Front Immunol 13 927265 (2022)
  10. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Lim S, Lee KW, Kim JY, Kim KD. Int J Mol Sci 25 331 (2023)
  11. Role of Non-Receptor-Type Tyrosine Phosphatases in Brain-Related Diseases. He Y, Nan D, Wang H. Mol Neurobiol (2023)

Articles citing this publication (28)

  1. Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Liu CY, Tseng LM, Su JC, Chang KC, Chu PY, Tai WT, Shiau CW, Chen KF. Breast Cancer Res 15 R63 (2013)
  2. Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D. Pageon SV, Cordoba SP, Owen DM, Rothery SM, Oszmiana A, Davis DM. Sci Signal 6 ra62 (2013)
  3. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW, Chen KF. Hepatology 59 190-201 (2014)
  4. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun Signal 10 32 (2012)
  5. Fibroblast growth factor receptor like-1 (FGFRL1) interacts with SHP-1 phosphatase at insulin secretory granules and induces beta-cell ERK1/2 protein activation. Silva PN, Altamentova SM, Kilkenny DM, Rocheleau JV. J Biol Chem 288 17859-17870 (2013)
  6. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1. Matalon O, Ben-Shmuel A, Kivelevitz J, Sabag B, Fried S, Joseph N, Noy E, Biber G, Barda-Saad M. EMBO J 37 e96264 (2018)
  7. Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis. Su JC, Mar AC, Wu SH, Tai WT, Chu PY, Wu CY, Tseng LM, Lee TC, Chen KF, Liu CY, Chiu HC, Shiau CW. Sci Rep 6 28888 (2016)
  8. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome. Pannone L, Bocchinfuso G, Flex E, Rossi C, Baldassarre G, Lissewski C, Pantaleoni F, Consoli F, Lepri F, Magliozzi M, Anselmi M, Delle Vigne S, Sorge G, Karaer K, Cuturilo G, Sartorio A, Tinschert S, Accadia M, Digilio MC, Zampino G, De Luca A, Cavé H, Zenker M, Gelb BD, Dallapiccola B, Stella L, Ferrero GB, Martinelli S, Tartaglia M. Hum Mutat 38 451-459 (2017)
  9. Sorafenib analogue SC-60 induces apoptosis through the SHP-1/STAT3 pathway and enhances docetaxel cytotoxicity in triple-negative breast cancer cells. Liu CY, Su JC, Huang TT, Chu PY, Huang CT, Wang WL, Lee CH, Lau KY, Tsai WC, Yang HP, Shiau CW, Tseng LM, Chen KF. Mol Oncol 11 266-279 (2017)
  10. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Myers DR, Abram CL, Wildes D, Belwafa A, Welsh AMN, Schulze CJ, Choy TJ, Nguyen T, Omaque N, Hu Y, Singh M, Hansen R, Goldsmith MA, Quintana E, Smith JAM, Lowell CA. Front Immunol 11 576310 (2020)
  11. Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1. Goyette J, Salas CS, Coker-Gordon N, Bridge M, Isaacson SA, Allard J, Dushek O. Sci Adv 3 e1601692 (2017)
  12. Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Evren S, Wan S, Ma XZ, Fahim S, Mody N, Sakac D, Jin T, Branch DR. Genomics 102 491-499 (2013)
  13. Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Hu MH, Chen LJ, Chen YL, Tsai MS, Shiau CW, Chao TI, Liu CY, Kao JH, Chen KF. Oncotarget 8 65077-65089 (2017)
  14. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. J Biol Chem 296 100538 (2021)
  15. Dovitinib Acts As a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3 Signaling. Huang CY, Tai WT, Wu SY, Shih CT, Chen MH, Tsai MH, Kuo CW, Shiau CW, Hung MH, Chen KF. Int J Radiat Oncol Biol Phys 95 761-771 (2016)
  16. Src-homology protein tyrosine phosphatase-1 agonist, SC-43, reduces liver fibrosis. Su TH, Shiau CW, Jao P, Yang NJ, Tai WT, Liu CJ, Tseng TC, Yang HC, Liu CH, Huang KW, Hu TC, Huang YJ, Wu YM, Chen LJ, Chen PJ, Chen DS, Chen KF, Kao JH. Sci Rep 7 1728 (2017)
  17. DNMT3a promotes proliferation by activating the STAT3 signaling pathway and depressing apoptosis in pancreatic cancer. Jing W, Song N, Liu YP, Qu XJ, Qi YF, Li C, Hou KZ, Che XF, Yang XH. Cancer Manag Res 11 6379-6396 (2019)
  18. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Front Immunol 11 592329 (2020)
  19. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. Alicea-Velázquez NL, Jakoncic J, Boggon TJ. J Struct Biol 181 243-251 (2013)
  20. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Elife 11 e73282 (2022)
  21. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Alicea-Velazquez NL, Boggon TJ. Protein Pept Lett 20 1039-1048 (2013)
  22. Structure based design of selective SHP2 inhibitors by De novo design, synthesis and biological evaluation. Liu WS, Jin WY, Zhou L, Lu XH, Li WY, Ma Y, Wang RL. J Comput Aided Mol Des 33 759-774 (2019)
  23. The Non-Receptor Protein Tyrosine Phosphatase PTPN6 Mediates a Positive Regulatory Approach From the Interferon Regulatory Factor to the JAK/STAT Pathway in Litopenaeus vannamei. Luo M, Xu X, Liu X, Shen W, Yang L, Zhu Z, Weng S, He J, Zuo H. Front Immunol 13 913955 (2022)
  24. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  25. Measuring Protein Tyrosine Phosphatase Activity Dependent on SH2 Domain-Mediated Regulation. Rios P, Kiani A, Köhn M. Methods Mol Biol 2705 351-358 (2023)
  26. SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis. Kumar A, Schwab M, Laborit Labrada B, Silveira MAD, Goudreault M, Fournier É, Bellmann K, Beauchemin N, Gingras AC, Bilodeau S, Laplante M, Marette A. J Biol Chem 299 105164 (2023)
  27. SHP-1 tyrosine phosphatase binding to c-Src kinase phosphor-dependent conformations: A comparative structural framework. Gul M, Navid A, Fakhar M, Rashid S. PLoS One 18 e0278448 (2023)
  28. THEMIS is a substrate and allosteric activator of SHP1, playing dual roles during T cell development. Zhang J, Jiang Z, Zhang X, Yang Z, Wang J, Chen J, Chen L, Song M, Zhang Y, Huang M, Chen S, Xiong X, Wang Y, Hao P, Horng T, Zhuang M, Zhang L, Zuo E, Bai F, Zheng J, Wang H, Fan G. Nat Struct Mol Biol 31 54-67 (2024)