3pqr Citations

Crystal structure of metarhodopsin II.

Nature 471 651-5 (2011)
Cited: 438 times
EuropePMC logo PMID: 21389988

Abstract

G-protein-coupled receptors (GPCRs) are seven transmembrane helix (TM) proteins that transduce signals into living cells by binding extracellular ligands and coupling to intracellular heterotrimeric G proteins (Gαβγ). The photoreceptor rhodopsin couples to transducin and bears its ligand 11-cis-retinal covalently bound via a protonated Schiff base to the opsin apoprotein. Absorption of a photon causes retinal cis/trans isomerization and generates the agonist all-trans-retinal in situ. After early photoproducts, the active G-protein-binding intermediate metarhodopsin II (Meta II) is formed, in which the retinal Schiff base is still intact but deprotonated. Dissociation of the proton from the Schiff base breaks a major constraint in the protein and enables further activating steps, including an outward tilt of TM6 and formation of a large cytoplasmic crevice for uptake of the interacting C terminus of the Gα subunit. Owing to Schiff base hydrolysis, Meta II is short-lived and notoriously difficult to crystallize. We therefore soaked opsin crystals with all-trans-retinal to form Meta II, presuming that the crystal's high concentration of opsin in an active conformation (Ops*) may facilitate all-trans-retinal uptake and Schiff base formation. Here we present the 3.0 Å and 2.85 Å crystal structures, respectively, of Meta II alone or in complex with an 11-amino-acid C-terminal fragment derived from Gα (GαCT2). GαCT2 binds in a large crevice at the cytoplasmic side, akin to the binding of a similar Gα-derived peptide to Ops* (ref. 7). In the Meta II structures, the electron density from the retinal ligand seamlessly continues into the Lys 296 side chain, reflecting proper formation of the Schiff base linkage. The retinal is in a relaxed conformation and almost undistorted compared with pure crystalline all-trans-retinal. By comparison with early photoproducts we propose how retinal translocation and rotation induce the gross conformational changes characteristic for Meta II. The structures can now serve as models for the large GPCR family.

Reviews - 3pqr mentioned but not cited (18)

  1. Structure-function of the G protein-coupled receptor superfamily. Katritch V, Cherezov V, Stevens RC. Annu Rev Pharmacol Toxicol 53 531-556 (2013)
  2. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Chem Rev 114 126-163 (2014)
  3. Diversity and modularity of G protein-coupled receptor structures. Katritch V, Cherezov V, Stevens RC. Trends Pharmacol Sci 33 17-27 (2012)
  4. Action of molecular switches in GPCRs--theoretical and experimental studies. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Curr Med Chem 19 1090-1109 (2012)
  5. The significance of G protein-coupled receptor crystallography for drug discovery. Salon JA, Lodowski DT, Palczewski K. Pharmacol Rev 63 901-937 (2011)
  6. Structural Basis for G Protein-Coupled Receptor Activation. Manglik A, Kruse AC. Biochemistry 56 5628-5634 (2017)
  7. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Jacobson KA, Costanzi S. Mol Pharmacol 82 361-371 (2012)
  8. Structural Studies of G Protein-Coupled Receptors. Zhang D, Zhao Q, Wu B. Mol Cells 38 836-842 (2015)
  9. Structure and activation of rhodopsin. Zhou XE, Melcher K, Xu HE. Acta Pharmacol Sin 33 291-299 (2012)
  10. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Front Endocrinol (Lausanne) 8 86 (2017)
  11. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Tesmer JJ. Nat Rev Mol Cell Biol 17 439-450 (2016)
  12. Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors. Sato T, Kawasaki T, Mine S, Matsumura H. Int J Mol Sci 17 E1930 (2016)
  13. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Mertz B, Struts AV, Feller SE, Brown MF. Biochim Biophys Acta 1818 241-251 (2012)
  14. Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy. Pope A, Eilers M, Reeves PJ, Smith SO. Biochim Biophys Acta 1837 683-693 (2014)
  15. Prostacyclin receptor regulation--from transcription to trafficking. Midgett C, Stitham J, Martin K, Hwa J. Curr Mol Med 11 517-528 (2011)
  16. Structural approaches to understanding retinal proteins needed for vision. Orban T, Jastrzebska B, Palczewski K. Curr Opin Cell Biol 27 32-43 (2014)
  17. Deconstructing the transmembrane core of class A G protein-coupled receptors. Smith SO. Trends Biochem Sci 46 1017-1029 (2021)
  18. Structural biology of 11-cis-retinaldehyde production in the classical visual cycle. Daruwalla A, Choi EH, Palczewski K, Kiser PD. Biochem J 475 3171-3188 (2018)

Articles - 3pqr mentioned but not cited (80)

  1. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Nature 477 549-555 (2011)
  2. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK. Nucleic Acids Res 45 D271-D281 (2017)
  3. Structure of the µ-opioid receptor-Gi protein complex. Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H, Schertler GFX, Granier S, Weis WI, Dror RO, Manglik A, Skiniotis G, Kobilka BK. Nature 558 547-552 (2018)
  4. Structure of the agonist-bound neurotensin receptor. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R. Nature 490 508-513 (2012)
  5. Pharmacogenomics of GPCR Drug Targets. Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Cell 172 41-54.e19 (2018)
  6. NGL Viewer: a web application for molecular visualization. Rose AS, Hildebrand PW. Nucleic Acids Res 43 W576-9 (2015)
  7. Selectivity determinants of GPCR-G-protein binding. Flock T, Hauser AS, Lund N, Gloriam DE, Balaji S, Babu MM. Nature 545 317-322 (2017)
  8. Common activation mechanism of class A GPCRs. Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Elife 8 e50279 (2019)
  9. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM. Nature 536 484-487 (2016)
  10. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Kang Y, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N, Dutka P, Zhou XE, Bartesaghi A, Erramilli S, Morizumi T, Gu X, Yin Y, Liu P, Jiang Y, Meng X, Zhao G, Melcher K, Ernst OP, Kossiakoff AA, Subramaniam S, Xu HE. Nature 558 553-558 (2018)
  11. Structural Basis of Smoothened Activation in Hedgehog Signaling. Huang P, Zheng S, Wierbowski BM, Kim Y, Nedelcu D, Aravena L, Liu J, Kruse AC, Salic A. Cell 174 312-324.e16 (2018)
  12. Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release. Alexander NS, Preininger AM, Kaya AI, Stein RA, Hamm HE, Meiler J. Nat Struct Mol Biol 21 56-63 (2014)
  13. Structural prerequisites for G-protein activation by the neurotensin receptor. Krumm BE, White JF, Shah P, Grisshammer R. Nat Commun 6 7895 (2015)
  14. Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Orban T, Jastrzebska B, Gupta S, Wang B, Miyagi M, Chance MR, Palczewski K. Structure 20 826-840 (2012)
  15. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Kayikci M, Venkatakrishnan AJ, Scott-Brown J, Ravarani CNJ, Flock T, Babu MM. Nat Struct Mol Biol 25 185-194 (2018)
  16. Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs). Singh N, Pydi SP, Upadhyaya J, Chelikani P. J Biol Chem 286 36032-36041 (2011)
  17. Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation. Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA, Skiniotis G. Mol Cell 75 781-790.e3 (2019)
  18. Post-refinement method for snapshot serial crystallography. White TA. Philos Trans R Soc Lond B Biol Sci 369 20130330 (2014)
  19. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. Brüser A, Schulz A, Rothemund S, Ricken A, Calebiro D, Kleinau G, Schöneberg T. J Biol Chem 291 508-520 (2016)
  20. Molecular assembly of rhodopsin with G protein-coupled receptor kinases. He Y, Gao X, Goswami D, Hou L, Pal K, Yin Y, Zhao G, Ernst OP, Griffin P, Melcher K, Xu HE. Cell Res 27 728-747 (2017)
  21. Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. Latek D, Pasznik P, Carlomagno T, Filipek S. PLoS One 8 e56742 (2013)
  22. Lecture Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Palczewski K. Invest Ophthalmol Vis Sci 55 6651-6672 (2014)
  23. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor. Tsukamoto H, Farrens DL. J Biol Chem 288 28207-28216 (2013)
  24. G protein-coupled receptors: the evolution of structural insight. Gacasan SB, Baker DL, Parrill AL. AIMS Biophys 4 491-527 (2017)
  25. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes. Schöneberg J, Heck M, Hofmann KP, Noé F. Biophys J 107 1042-1053 (2014)
  26. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Isom DG, Dohlman HG. Proc Natl Acad Sci U S A 112 5702-5707 (2015)
  27. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Proteins 81 1304-1317 (2013)
  28. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism. Dalton JA, Lans I, Giraldo J. BMC Bioinformatics 16 124 (2015)
  29. Differential light-induced responses in sectorial inherited retinal degeneration. Ramon E, Cordomí A, Aguilà M, Srinivasan S, Dong X, Moore AT, Webster AR, Cheetham ME, Garriga P. J Biol Chem 289 35918-35928 (2014)
  30. Molecular basis for dramatic changes in cannabinoid CB1 G protein-coupled receptor activation upon single and double point mutations. Scott CE, Abrol R, Ahn KH, Kendall DA, Goddard WA. Protein Sci 22 101-113 (2013)
  31. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi. Shim JY, Ahn KH, Kendall DA. J Biol Chem 288 32449-32465 (2013)
  32. Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. Sun X, Singh S, Blumer KJ, Bowman GR. Elife 7 e38465 (2018)
  33. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Chen Q, Plasencia M, Li Z, Mukherjee S, Patra D, Chen CL, Klose T, Yao XQ, Kossiakoff AA, Chang L, Andrews PC, Tesmer JJG. Nature 595 600-605 (2021)
  34. Ligand channel in pharmacologically stabilized rhodopsin. Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, Dawson RJP. Proc Natl Acad Sci U S A 115 3640-3645 (2018)
  35. The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation. Blankenship E, Vahedi-Faridi A, Lodowski DT. Structure 23 2358-2364 (2015)
  36. Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Gulati S, Jastrzebska B, Banerjee S, Placeres ÁL, Miszta P, Gao S, Gunderson K, Tochtrop GP, Filipek S, Katayama K, Kiser PD, Mogi M, Stewart PL, Palczewski K. Proc Natl Acad Sci U S A 114 E2608-E2615 (2017)
  37. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury. Pressly JD, Mustafa SM, Adibi AH, Alghamdi S, Pandey P, Pandey P, Roy KK, Roy KK, Doerksen RJ, Moore BM, Park F. J Pharmacol Exp Ther 364 287-299 (2018)
  38. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics. Zhang P, Leger AJ, Baleja JD, Rana R, Corlin T, Nguyen N, Koukos G, Bohm A, Covic L, Kuliopulos A. J Biol Chem 290 15785-15798 (2015)
  39. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Front Mol Biosci 4 63 (2017)
  40. Epistatic interactions influence terrestrial-marine functional shifts in cetacean rhodopsin. Dungan SZ, Chang BS. Proc Biol Sci 284 20162743 (2017)
  41. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils. Maaty WS, Lord CI, Gripentrog JM, Riesselman M, Keren-Aviram G, Liu T, Dratz EA, Bothner B, Jesaitis AJ. J Biol Chem 288 27042-27058 (2013)
  42. Structure and activation of the TSH receptor transmembrane domain. Núñez Miguel R, Sanders J, Furmaniak J, Smith BR. Auto Immun Highlights 8 2 (2017)
  43. Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins. Abrol R, Kim SK, Bray JK, Griffith AR, Goddard WA. Methods 55 405-414 (2011)
  44. G Protein-Coupled Receptors Contain Two Conserved Packing Clusters. Sanchez-Reyes OB, Cooke ALG, Tranter DB, Rashid D, Eilers M, Reeves PJ, Smith SO. Biophys J 112 2315-2326 (2017)
  45. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. Čapek D, Smutny M, Tichy AM, Morri M, Janovjak H, Heisenberg CP. Elife 8 e42093 (2019)
  46. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. Castiglione GM, Chang BS. Elife 7 e35957 (2018)
  47. Allosteric mechanisms of G protein-Coupled Receptor signaling: a structural perspective. Thaker TM, Kaya AI, Preininger AM, Hamm HE, Iverson TM. Methods Mol Biol 796 133-174 (2012)
  48. Free backbone carbonyls mediate rhodopsin activation. Kimata N, Pope A, Sanchez-Reyes OB, Eilers M, Opefi CA, Ziliox M, Reeves PJ, Smith SO. Nat Struct Mol Biol 23 738-743 (2016)
  49. Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT1R Initiated by van der Waals Attraction. Singh KD, Unal H, Desnoyer R, Karnik SS. J Chem Inf Model 59 373-385 (2019)
  50. Negative allosteric modulators of cannabinoid receptor 2: protein modeling, binding site identification and molecular dynamics simulations in the presence of an orthosteric agonist. Pandey P, Roy KK, Doerksen RJ. J Biomol Struct Dyn 38 32-47 (2020)
  51. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction. Rose AS, Zachariae U, Grubmüller H, Hofmann KP, Scheerer P, Hildebrand PW. PLoS One 10 e0143399 (2015)
  52. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model. Sasaki T, Mita M, Ikari N, Kuboyama A, Hashimoto S, Kaneko T, Ishiguro M, Shimizu M, Inoue J, Sato R. PLoS One 12 e0179226 (2017)
  53. Ligand/kappa-opioid receptor interactions: insights from the X-ray crystal structure. Martinez-Mayorga K, Byler KG, Yongye AB, Giulianotti MA, Dooley CT, Houghten RA. Eur J Med Chem 66 114-121 (2013)
  54. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin. Kazmin R, Rose A, Szczepek M, Elgeti M, Ritter E, Piechnick R, Hofmann KP, Scheerer P, Hildebrand PW, Bartl FJ. J Biol Chem 290 20117-20127 (2015)
  55. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. Kimata N, Reeves PJ, Smith SO. J Magn Reson 253 111-118 (2015)
  56. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1. Thaker TM, Sarwar M, Preininger AM, Hamm HE, Iverson TM. J Biol Chem 289 11331-11341 (2014)
  57. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN. Curr Neuropharmacol 16 786-848 (2018)
  58. A Conserved Proline Hinge Mediates Helix Dynamics and Activation of Rhodopsin. Pope AL, Sanchez-Reyes OB, South K, Zaitseva E, Ziliox M, Vogel R, Reeves PJ, Smith SO. Structure 28 1004-1013.e4 (2020)
  59. Common and distinct mechanisms of activation of rhodopsin and other G protein-coupled receptors. Nakamura S, Itabashi T, Ogawa D, Okada T. Sci Rep 3 1844 (2013)
  60. Comparative analysis of the heptahelical transmembrane bundles of G protein-coupled receptors. Okada T. PLoS One 7 e35802 (2012)
  61. Creation of photocyclic vertebrate rhodopsin by single amino acid substitution. Sakai K, Shichida Y, Imamoto Y, Yamashita T. Elife 11 e75979 (2022)
  62. A benchmark study of loop modeling methods applied to G protein-coupled receptors. Wink LH, Baker DL, Cole JA, Parrill AL. J Comput Aided Mol Des 33 573-595 (2019)
  63. Characterizing Interhelical Interactions of G-Protein Coupled Receptors with the Fragment Molecular Orbital Method. Heifetz A, Morao I, Babu MM, James T, Southey MWY, Fedorov DG, Aldeghi M, Bodkin MJ, Townsend-Nicholson A. J Chem Theory Comput 16 2814-2824 (2020)
  64. Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition. Bemister-Buffington J, Wolf AJ, Raschka S, Kuhn LA. Biomolecules 10 E454 (2020)
  65. Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation. Van Nynatten A, Castiglione GM, de A Gutierrez E, Lovejoy NR, Chang BSW. Mol Biol Evol 38 2076-2087 (2021)
  66. Rescue of misrouted GnRHR mutants reveals its constitutive activity. Janovick JA, Pogozheva ID, Mosberg HI, Cornea A, Conn PM. Mol Endocrinol 26 1179-1188 (2012)
  67. Seleno-detergent MAD phasing of leukotriene C4 synthase in complex with dodecyl-β-D-selenomaltoside. Saino H, Ago H, Ukita Y, Miyano M. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1666-1673 (2011)
  68. Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase. Pandiyan VP, Nguyen PT, Pugh EN, Sabesan R. Proc Natl Acad Sci U S A 119 e2202485119 (2022)
  69. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations. Yamazaki Y, Nagata T, Terakita A, Kandori H, Shichida Y, Imamoto Y. J Biol Chem 289 13792-13800 (2014)
  70. Shining Light on Molecular Mechanism for Odor-selectivity of CNT-immobilized Olfactory Receptor. Zhang L, Yuan Y, Ren T, Guo Y, Li C, Pu X. Sci Rep 8 7824 (2018)
  71. 7×7 RMSD matrix: A new method for quantitative comparison of the transmembrane domain structures in the G-protein coupled receptors. Wang T, Wang Y, Tang L, Duan Y, Liu H. J Struct Biol 199 87-101 (2017)
  72. Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes. Hong JD, Salom D, Kochman MA, Kubas A, Kiser PD, Palczewski K. Proc Natl Acad Sci U S A 119 e2213911119 (2022)
  73. Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. Rodriguez-Contreras D, Condon AF, Buck DC, Asad N, Dore TM, Verbeek DS, Tijssen MAJ, Shinde U, Williams JT, Neve KA. ACS Chem Neurosci 12 1873-1884 (2021)
  74. BIO-GATS: A Tool for Automated GPCR Template Selection Through a Biophysical Approach for Homology Modeling. Jabeen A, Vijayram R, Ranganathan S. Front Mol Biosci 8 617176 (2021)
  75. In silico prediction of ARB resistance: A first step in creating personalized ARB therapy. Anderson SD, Tabassum A, Yeon JK, Sharma G, Santos P, Soong TH, Thu YW, Nies I, Kurita T, Chandler A, Alsamarah A, Kanassatega RS, Luo YL, Botello-Smith WM, Andresen BT. PLoS Comput Biol 16 e1007719 (2020)
  76. The rhodopsin-arrestin-1 interaction in bicelles. Chen Q, Vishnivetskiy SA, Zhuang T, Cho MK, Thaker TM, Sanders CR, Gurevich VV, Iverson TM. Methods Mol Biol 1271 77-95 (2015)
  77. Adaptation of Antarctic Icefish Vision to Extreme Environments. Castiglione GM, Hauser FE, Van Nynatten A, Chang BSW. Mol Biol Evol 40 msad030 (2023)
  78. i-derived peptide binds the µ-opioid receptor. Kossoń P, Dyniewicz J, Lipiński PFJ, Matalińska J, Misicka A, Bojarski AJ, Mordalski S. Pharmacol Rep 75 465-473 (2023)
  79. Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations. Schafer CT, Shumate A, Farrens DL. J Biol Chem 295 17486-17496 (2020)
  80. The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation in Scientific Research. Sojka AC, Brennan KM, Maizels ET, Young CD. J Biocommun 41 e6 (2017)


Reviews citing this publication (96)

  1. Molecular signatures of G-protein-coupled receptors. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Nature 494 185-194 (2013)
  2. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Pharmacol Rev 65 223-254 (2013)
  3. The Molecular Basis of G Protein-Coupled Receptor Activation. Weis WI, Kobilka BK. Annu Rev Biochem 87 897-919 (2018)
  4. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. Pharmacol Ther 133 40-69 (2012)
  5. Biased signalling: from simple switches to allosteric microprocessors. Smith JS, Lefkowitz RJ, Rajagopal S. Nat Rev Drug Discov 17 243-260 (2018)
  6. Evolution of phototransduction, vertebrate photoreceptors and retina. Lamb TD. Prog Retin Eye Res 36 52-119 (2013)
  7. Muscarinic acetylcholine receptors: novel opportunities for drug development. Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J. Nat Rev Drug Discov 13 549-560 (2014)
  8. Chemistry of the retinoid (visual) cycle. Kiser PD, Golczak M, Palczewski K. Chem Rev 114 194-232 (2014)
  9. Chemistry and biology of vision. Palczewski K. J Biol Chem 287 1612-1619 (2012)
  10. Lifting the lid on GPCRs: the role of extracellular loops. Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J. Br J Pharmacol 165 1688-1703 (2012)
  11. Nanobody stabilization of G protein-coupled receptor conformational states. Steyaert J, Kobilka BK. Curr Opin Struct Biol 21 567-572 (2011)
  12. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. McHaourab HS, Steed PR, Kazmier K. Structure 19 1549-1561 (2011)
  13. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Manglik A, Kobilka B. Curr Opin Cell Biol 27 136-143 (2014)
  14. Progress in structure based drug design for G protein-coupled receptors. Congreve M, Langmead CJ, Mason JS, Marshall FH. J Med Chem 54 4283-4311 (2011)
  15. Structural insights into G-protein-coupled receptor allostery. Thal DM, Glukhova A, Sexton PM, Christopoulos A. Nature 559 45-53 (2018)
  16. Vitamin A metabolism in rod and cone visual cycles. Saari JC. Annu Rev Nutr 32 125-145 (2012)
  17. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Manglik A, Kobilka BK, Steyaert J. Annu Rev Pharmacol Toxicol 57 19-37 (2017)
  18. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Sato PY, Chuprun JK, Schwartz M, Koch WJ. Physiol Rev 95 377-404 (2015)
  19. The functional cycle of visual arrestins in photoreceptor cells. Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. Prog Retin Eye Res 30 405-430 (2011)
  20. Interactive features of proteins composing eukaryotic circadian clocks. Crane BR, Young MW. Annu Rev Biochem 83 191-219 (2014)
  21. Minireview: More than just a hammer: ligand "bias" and pharmaceutical discovery. Luttrell LM. Mol Endocrinol 28 281-294 (2014)
  22. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. Preininger AM, Meiler J, Hamm HE. J Mol Biol 425 2288-2298 (2013)
  23. The role of the lipid matrix for structure and function of the GPCR rhodopsin. Soubias O, Gawrisch K. Biochim Biophys Acta 1818 234-240 (2012)
  24. Mechanistic insights into GPCR-G protein interactions. Mahoney JP, Sunahara RK. Curr Opin Struct Biol 41 247-254 (2016)
  25. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Korenbrot JI. Prog Retin Eye Res 31 442-466 (2012)
  26. Retinoids and Retinal Diseases. Kiser PD, Palczewski K. Annu Rev Vis Sci 2 197-234 (2016)
  27. G protein-coupled receptors--recent advances. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. Acta Biochim Pol 59 515-529 (2012)
  28. Soft Matter in Lipid-Protein Interactions. Brown MF. Annu Rev Biophys 46 379-410 (2017)
  29. Structural features of the G-protein/GPCR interactions. Moreira IS. Biochim Biophys Acta 1840 16-33 (2014)
  30. Biased agonism at G protein-coupled receptors: the promise and the challenges--a medicinal chemistry perspective. Shonberg J, Lopez L, Scammells PJ, Christopoulos A, Capuano B, Lane JR. Med Res Rev 34 1286-1330 (2014)
  31. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Biochim Biophys Acta 1838 15-33 (2014)
  32. Structural determinants of arrestin functions. Gurevich VV, Gurevich EV. Prog Mol Biol Transl Sci 118 57-92 (2013)
  33. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Grote M, Engelhard M, Hegemann P. Biochim Biophys Acta 1837 533-545 (2014)
  34. Structural Basis of Arrestin-Dependent Signal Transduction. Chen Q, Iverson TM, Gurevich VV. Trends Biochem Sci 43 412-423 (2018)
  35. Constitutively active rhodopsin and retinal disease. Park PS. Adv Pharmacol 70 1-36 (2014)
  36. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Milić D, Veprintsev DB. Front Pharmacol 6 66 (2015)
  37. Molecular and evolutionary aspects of microbial sensory rhodopsins. Inoue K, Tsukamoto T, Sudo Y. Biochim Biophys Acta 1837 562-577 (2014)
  38. Structural mechanism of arrestin activation. Scheerer P, Sommer ME. Curr Opin Struct Biol 45 160-169 (2017)
  39. From atomic structures to neuronal functions of g protein-coupled receptors. Palczewski K, Orban T. Annu Rev Neurosci 36 139-164 (2013)
  40. Relevance of rhodopsin studies for GPCR activation. Deupi X. Biochim Biophys Acta 1837 674-682 (2014)
  41. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Culhane KJ, Liu Y, Cai Y, Yan EC. Front Pharmacol 6 264 (2015)
  42. Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. Carpenter B, Tate CG. Curr Opin Struct Biol 45 124-132 (2017)
  43. Cone visual pigments. Imamoto Y, Shichida Y. Biochim Biophys Acta 1837 664-673 (2014)
  44. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Gurevich VV, Gurevich EV. Int J Mol Sci 18 E2519 (2017)
  45. Conserved activation pathways in G-protein-coupled receptors. Deupi X, Standfuss J, Schertler G. Biochem Soc Trans 40 383-388 (2012)
  46. Structural mechanism of G protein activation by G protein-coupled receptor. Duc NM, Kim HR, Chung KY. Eur J Pharmacol 763 214-222 (2015)
  47. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography. Piscitelli CL, Kean J, de Graaf C, Deupi X. Mol Pharmacol 88 536-551 (2015)
  48. Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Hurst DP, Schmeisser M, Reggio PH. Chem Phys Lipids 169 46-56 (2013)
  49. Ensemble of G protein-coupled receptor active states. Park PS. Curr Med Chem 19 1146-1154 (2012)
  50. Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development. Kruse AC, Hu J, Kobilka BK, Wess J. Curr Opin Pharmacol 16 24-30 (2014)
  51. Solid-state NMR spectroscopy to study protein-lipid interactions. Huster D. Biochim Biophys Acta 1841 1146-1160 (2014)
  52. GPCR: G protein complexes--the fundamental signaling assembly. Jastrzebska B. Amino Acids 45 1303-1314 (2013)
  53. Production of GPCR and GPCR complexes for structure determination. Maeda S, Schertler GF. Curr Opin Struct Biol 23 381-392 (2013)
  54. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding. Flanagan CA, Manilall A. Front Endocrinol (Lausanne) 8 274 (2017)
  55. Methods used to study the oligomeric structure of G-protein-coupled receptors. Guo H, An S, Ward R, Yang Y, Liu Y, Guo XX, Hao Q, Xu TR. Biosci Rep 37 BSR20160547 (2017)
  56. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Jones AJY, Gabriel F, Tandale A, Nietlispach D. Molecules 25 E4729 (2020)
  57. Endocrinology and the brain: corticotropin-releasing hormone signaling. Inda C, Armando NG, Dos Santos Claro PA, Silberstein S. Endocr Connect 6 R99-R120 (2017)
  58. Structural biology of G protein-coupled receptor signaling complexes. Edward Zhou X, Melcher K, Eric Xu H. Protein Sci 28 487-501 (2019)
  59. Peptide ligand recognition by G protein-coupled receptors. Krumm BE, Grisshammer R. Front Pharmacol 6 48 (2015)
  60. Physiological mechanisms of signal termination in biological systems. Ligeti E, Csépányi-Kömi R, Hunyady L. Acta Physiol (Oxf) 204 469-478 (2012)
  61. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength. Wang W, Geiger JH, Borhan B. Bioessays 36 65-74 (2014)
  62. Molecular mechanism of phosphorylation-dependent arrestin activation. Ostermaier MK, Schertler GF, Standfuss J. Curr Opin Struct Biol 29 143-151 (2014)
  63. GPCR activation: protonation and membrane potential. Zhang XC, Sun K, Zhang L, Li X, Cao C. Protein Cell 4 747-760 (2013)
  64. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. Kiser PD, Palczewski K. J Biol Chem 296 100072 (2021)
  65. Structure-function studies with G protein-coupled receptors as a paradigm for improving drug discovery and development of therapeutics. McNeely PM, Naranjo AN, Robinson AS. Biotechnol J 7 1451-1461 (2012)
  66. Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Park JY, Lee SY, Kim HR, Seo MD, Chung KY. Arch Pharm Res 39 293-301 (2016)
  67. Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Schonenbach NS, Hussain S, O'Malley MA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 408-427 (2015)
  68. Sulfur-containing amino acids in 7TMRs: molecular gears for pharmacology and function. Cordomí A, Gómez-Tamayo JC, Gigoux V, Fourmy D. Trends Pharmacol Sci 34 320-331 (2013)
  69. A structural snapshot of the rhodopsin-arrestin complex. Kang Y, Gao X, Zhou XE, He Y, Melcher K, Xu HE. FEBS J 283 816-821 (2016)
  70. Computational approaches for modeling GPCR dimerization. Meng XY, Mezei M, Cui M. Curr Pharm Biotechnol 15 996-1006 (2014)
  71. [G protein-coupled receptors in the spotlight]. Lebon G, Tate CG. Med Sci (Paris) 28 876-882 (2012)
  72. Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Van Eps N, Caro LN, Morizumi T, Ernst OP. Photochem Photobiol Sci 14 1586-1597 (2015)
  73. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Pharmacol Rev 69 316-353 (2017)
  74. Implications of short time scale dynamics on long time processes. El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Struct Dyn 4 061507 (2017)
  75. Cis-retinoids and the chemistry of vision. Cascella M, Bärfuss S, Stocker A. Arch Biochem Biophys 539 187-195 (2013)
  76. Insights into the activation mechanism of the visual receptor rhodopsin. Smith SO. Biochem Soc Trans 40 389-393 (2012)
  77. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Biophys Rev 9 861-876 (2017)
  78. G-protein-coupled receptor dynamics: dimerization and activation models compared with experiment. Taddese B, Simpson LM, Wall ID, Blaney FE, Kidley NJ, Clark HS, Smith RE, Upton GJ, Gouldson PR, Psaroudakis G, Bywater RP, Reynolds CA. Biochem Soc Trans 40 394-399 (2012)
  79. Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Kleinau G, Heyder NA, Tao YX, Scheerer P. Int J Mol Sci 21 E5728 (2020)
  80. Structural aspects of rod opsin and their implication in genetic diseases. Fanelli F, Felline A, Marigo V. Pflugers Arch 473 1339-1359 (2021)
  81. The role of experimental and computational structural approaches in 7TM drug discovery. Topiol S, Sabio M. Expert Opin Drug Discov 10 1071-1084 (2015)
  82. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. Johnston JM, Filizola M. Adv Exp Med Biol 796 95-125 (2014)
  83. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins. Bondar AN, Smith JC. Photochem Photobiol 93 1336-1344 (2017)
  84. Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins. Ryazantsev MN, Nikolaev DM, Struts AV, Brown MF. J Membr Biol 252 425-449 (2019)
  85. Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy. Struts AV, Chawla U, Perera SM, Brown MF. Methods Mol Biol 1271 133-158 (2015)
  86. Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Sapra KT, Spoerri PM, Engel A, Alsteens D, Müller DJ. Curr Opin Cell Biol 57 25-32 (2019)
  87. Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Kankanamge D, Ratnayake K, Senarath K, Tennakoon M, Harmon E, Karunarathne A. Anal Bioanal Chem 411 4481-4508 (2019)
  88. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Miyaguchi K. Biol Cell 106 323-345 (2014)
  89. FTIR study of primate color visual pigments. Katayama K, Kandori H. Biophysics (Nagoya-shi) 11 61-66 (2015)
  90. Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Maggio R, Fasciani I, Carli M, Petragnano F, Marampon F, Rossi M, Scarselli M. Biomolecules 11 1828 (2021)
  91. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Park PS. Pflugers Arch 473 1361-1376 (2021)
  92. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Hong JD, Palczewski K. Bioessays 45 e2300068 (2023)
  93. Convergent evolution of animal and microbial rhodopsins. Kojima K, Sudo Y. RSC Adv 13 5367-5381 (2023)
  94. Discovering electrophysiology in photobiology: A brief overview of several photobiological processes with an emphasis on electrophysiology. Volkov V. Commun Integr Biol 7 e28423 (2014)
  95. Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin. Fahmy K, Sakmar TP. Biophys Rev 15 111-125 (2023)
  96. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. de Grip WJ, Ganapathy S. Front Chem 10 879609 (2022)

Articles citing this publication (244)

  1. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK. Nature 504 101-106 (2013)
  2. The dynamic process of β(2)-adrenergic receptor activation. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK. Cell 152 532-542 (2013)
  3. Structural insights into µ-opioid receptor activation. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Nature 524 315-321 (2015)
  4. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE. Nature 523 561-567 (2015)
  5. Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL, Prosser RS, Kobilka BK. Cell 161 1101-1111 (2015)
  6. Three-dimensional structures of membrane proteins from genomic sequencing. Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. Cell 149 1607-1621 (2012)
  7. Activation mechanism of the β2-adrenergic receptor. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE. Proc Natl Acad Sci U S A 108 18684-18689 (2011)
  8. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Chung KY, Rasmussen SG, Liu T, Li S, DeVree BT, Chae PS, Calinski D, Kobilka BK, Woods VL, Sunahara RK. Nature 477 611-615 (2011)
  9. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE. Nature 503 295-299 (2013)
  10. Universal allosteric mechanism for Gα activation by GPCRs. Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Nature 524 173-179 (2015)
  11. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Ye L, Van Eps N, Zimmer M, Ernst OP, Prosser RS. Nature 533 265-268 (2016)
  12. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R, Baumeister W, May LT, Wootten D, Sexton PM, Glukhova A, Christopoulos A. Nature 558 559-563 (2018)
  13. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Huang J, Chen S, Zhang JJ, Huang XY. Nat Struct Mol Biol 20 419-425 (2013)
  14. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J. Proc Natl Acad Sci U S A 109 119-124 (2012)
  15. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. J Med Chem 55 1445-1464 (2012)
  16. Propagation of conformational changes during μ-opioid receptor activation. Sounier R, Mas C, Steyaert J, Laeremans T, Manglik A, Huang W, Kobilka BK, Déméné H, Granier S. Nature 524 375-378 (2015)
  17. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Science 364 552-557 (2019)
  18. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schütz M, Plückthun A. Proc Natl Acad Sci U S A 111 E655-62 (2014)
  19. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. J Am Chem Soc 134 10959-10965 (2012)
  20. Mini-G proteins: Novel tools for studying GPCRs in their active conformation. Nehmé R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R, Tate CG. PLoS One 12 e0175642 (2017)
  21. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Banères JL, Mouillac B, Granier S. Proc Natl Acad Sci U S A 109 6733-6738 (2012)
  22. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P. Nat Commun 5 4801 (2014)
  23. Crystal structure of pre-activated arrestin p44. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME. Nature 497 142-146 (2013)
  24. Efficacy of the β₂-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I. Nat Commun 3 1045 (2012)
  25. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Yuan S, Filipek S, Palczewski K, Vogel H. Nat Commun 5 4733 (2014)
  26. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Maeda S, Koehl A, Matile H, Hu H, Hilger D, Schertler GFX, Manglik A, Skiniotis G, Dawson RJP, Kobilka BK. Nat Commun 9 3712 (2018)
  27. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. Ahn KH, Mahmoud MM, Kendall DA. J Biol Chem 287 12070-12082 (2012)
  28. An Integrated Framework Advancing Membrane Protein Modeling and Design. Alford RF, Koehler Leman J, Weitzner BD, Duran AM, Tilley DC, Elazar A, Gray JJ. PLoS Comput Biol 11 e1004398 (2015)
  29. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J. Science 352 575-580 (2016)
  30. Curvature forces in membrane lipid-protein interactions. Brown MF. Biochemistry 51 9782-9795 (2012)
  31. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR. Proc Natl Acad Sci U S A 110 942-947 (2013)
  32. Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Goren MA, Morizumi T, Menon I, Joseph JS, Dittman JS, Cherezov V, Stevens RC, Ernst OP, Menon AK. Nat Commun 5 5115 (2014)
  33. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Bhattacharya S, Vaidehi N. Biophys J 107 422-434 (2014)
  34. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Proc Natl Acad Sci U S A 113 9928-9933 (2016)
  35. Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J. EMBO Rep 14 520-526 (2013)
  36. Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human β2 adrenergic receptor. Zocher M, Fung JJ, Kobilka BK, Müller DJ. Structure 20 1391-1402 (2012)
  37. Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor. Miao Y, Caliman AD, McCammon JA. Biophys J 108 1796-1806 (2015)
  38. Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Piechnick R, Ritter E, Hildebrand PW, Ernst OP, Scheerer P, Hofmann KP, Heck M. Proc Natl Acad Sci U S A 109 5247-5252 (2012)
  39. Asymmetry of the rhodopsin dimer in complex with transducin. Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K. FASEB J 27 1572-1584 (2013)
  40. Opsin, a structural model for olfactory receptors? Park JH, Morizumi T, Li Y, Hong JE, Pai EF, Hofmann KP, Choe HW, Ernst OP. Angew Chem Int Ed Engl 52 11021-11024 (2013)
  41. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, Palczewski K. Proc Natl Acad Sci U S A 109 E2747-56 (2012)
  42. Conformational equilibria of light-activated rhodopsin in nanodiscs. Van Eps N, Caro LN, Morizumi T, Kusnetzow AK, Szczepek M, Hofmann KP, Bayburt TH, Sligar SG, Ernst OP, Hubbell WL. Proc Natl Acad Sci U S A 114 E3268-E3275 (2017)
  43. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Sommer ME, Hofmann KP, Heck M. Nat Commun 3 995 (2012)
  44. Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques. Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M. PLoS Comput Biol 7 e1002193 (2011)
  45. Functional map of arrestin-1 at single amino acid resolution. Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J. Proc Natl Acad Sci U S A 111 1825-1830 (2014)
  46. State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using In Vivo-Mimetic Membranes. Song W, Yen HY, Robinson CV, Sansom MSP. Structure 27 392-403.e3 (2019)
  47. Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Van Eps N, Altenbach C, Caro LN, Latorraca NR, Hollingsworth SA, Dror RO, Ernst OP, Hubbell WL. Proc Natl Acad Sci U S A 115 2383-2388 (2018)
  48. Small-molecule antagonists of melanopsin-mediated phototransduction. Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP, Marzabadi M, Zhong H, Sprouse J, Zhu Q, Hartwick AT, Sollars PJ, Pickard GE, Panda S. Nat Chem Biol 9 630-635 (2013)
  49. Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. Malik RU, Ritt M, DeVree BT, Neubig RR, Sunahara RK, Sivaramakrishnan S. J Biol Chem 288 17167-17178 (2013)
  50. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K. J Biol Chem 290 25728-25744 (2015)
  51. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. Cvicek V, Goddard WA, Abrol R. PLoS Comput Biol 12 e1004805 (2016)
  52. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. J Struct Biol 182 209-218 (2013)
  53. Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. Jastrzebska B, Ringler P, Lodowski DT, Moiseenkova-Bell V, Golczak M, Müller SA, Palczewski K, Engel A. J Struct Biol 176 387-394 (2011)
  54. Time-resolved WAXS reveals accelerated conformational changes in iodoretinal-substituted proteorhodopsin. Malmerberg E, Omran Z, Hub JS, Li X, Katona G, Westenhoff S, Johansson LC, Andersson M, Cammarata M, Wulff M, van der Spoel D, Davidsson J, Specht A, Neutze R. Biophys J 101 1345-1353 (2011)
  55. Signaling by sensory receptors. Julius D, Nathans J. Cold Spring Harb Perspect Biol 4 a005991 (2012)
  56. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BS. Mol Biol Evol 31 1149-1165 (2014)
  57. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR. Ersoy BA, Pardo L, Zhang S, Thompson DA, Millhauser G, Govaerts C, Vaisse C. Nat Chem Biol 8 725-730 (2012)
  58. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Elife 6 e28505 (2017)
  59. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Zhao DY, Pöge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K. J Biol Chem 294 14215-14230 (2019)
  60. W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor. Yuan S, Hu Z, Filipek S, Vogel H. Angew Chem Int Ed Engl 54 556-559 (2015)
  61. The rhodopsin-transducin complex houses two distinct rhodopsin molecules. Jastrzebska B, Ringler P, Palczewski K, Engel A. J Struct Biol 182 164-172 (2013)
  62. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Kawamura S, Gerstung M, Colozo AT, Helenius J, Maeda A, Beerenwinkel N, Park PS, Müller DJ. Structure 21 426-437 (2013)
  63. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function. Soubias O, Teague WE, Hines KG, Gawrisch K. Biophys J 108 1125-1132 (2015)
  64. Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Sejdiu BI, Tieleman DP. Biophys J 118 1887-1900 (2020)
  65. Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. Abdul-Ridha A, López L, Keov P, Thal DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. J Biol Chem 289 6067-6079 (2014)
  66. Structure and dynamics of a constitutively active neurotensin receptor. Krumm BE, Lee S, Bhattacharya S, Botos I, White CF, Du H, Vaidehi N, Grisshammer R. Sci Rep 6 38564 (2016)
  67. Navigating Membrane Protein Structure, Dynamics, and Energy Landscapes Using Spin Labeling and EPR Spectroscopy. Claxton DP, Kazmier K, Mishra S, Mchaourab HS. Methods Enzymol 564 349-387 (2015)
  68. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. Fay JF, Farrens DL. J Biol Chem 287 33873-33882 (2012)
  69. Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Tsai CJ, Pamula F, Nehmé R, Mühle J, Weinert T, Flock T, Nogly P, Edwards PC, Carpenter B, Gruhl T, Ma P, Deupi X, Standfuss J, Tate CG, Schertler GFX. Sci Adv 4 eaat7052 (2018)
  70. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. Teague WE, Soubias O, Petrache H, Fuller N, Hines KG, Rand RP, Gawrisch K. Faraday Discuss 161 383-95; discussion 419-59 (2013)
  71. Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions. Salas-Estrada LA, Leioatts N, Romo TD, Grossfield A. Biophys J 114 355-367 (2018)
  72. Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. Wolf S, Grünewald S. PLoS One 10 e0123533 (2015)
  73. A non-mammalian type opsin 5 functions dually in the photoreceptive and non-photoreceptive organs of birds. Ohuchi H, Yamashita T, Tomonari S, Fujita-Yanagibayashi S, Sakai K, Noji S, Shichida Y. PLoS One 7 e31534 (2012)
  74. Rapid release of retinal from a cone visual pigment following photoactivation. Chen MH, Kuemmel C, Birge RR, Knox BE. Biochemistry 51 4117-4125 (2012)
  75. Recombinant cannabinoid type 2 receptor in liposome model activates g protein in response to anionic lipid constituents. Kimura T, Yeliseev AA, Vukoti K, Rhodes SD, Cheng K, Rice KC, Gawrisch K. J Biol Chem 287 4076-4087 (2012)
  76. Retinal conformation governs pKa of protonated Schiff base in rhodopsin activation. Zhu S, Brown MF, Feller SE. J Am Chem Soc 135 9391-9398 (2013)
  77. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation. Valentin-Hansen L, Holst B, Frimurer TM, Schwartz TW. J Biol Chem 287 43516-43526 (2012)
  78. Structural aspects of M₃ muscarinic acetylcholine receptor dimer formation and activation. Hu J, Thor D, Zhou Y, Liu T, Wang Y, McMillin SM, Mistry R, Challiss RA, Costanzi S, Wess J. FASEB J 26 604-616 (2012)
  79. A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. Behnen P, Felline A, Comitato A, Di Salvo MT, Raimondi F, Gulati S, Kahremany S, Palczewski K, Marigo V, Fanelli F. iScience 4 1-19 (2018)
  80. Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A₂A adenosine receptor. Deflorian F, Kumar TS, Phan K, Gao ZG, Xu F, Wu H, Katritch V, Stevens RC, Jacobson KA. J Med Chem 55 538-552 (2012)
  81. Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures. Leioatts N, Mertz B, Martínez-Mayorga K, Romo TD, Pitman MC, Feller SE, Grossfield A, Brown MF. Biochemistry 53 376-385 (2014)
  82. The molecular origin and evolution of dim-light vision in mammals. Bickelmann C, Morrow JM, Du J, Schott RK, van Hazel I, Lim S, Müller J, Chang BS. Evolution 69 2995-3003 (2015)
  83. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE. Biochem Pharmacol 85 1317-1329 (2013)
  84. CB2-selective cannabinoid receptor ligands: synthesis, pharmacological evaluation, and molecular modeling investigation of 1,8-Naphthyridin-2(1H)-one-3-carboxamides. Lucchesi V, Hurst DP, Shore DM, Bertini S, Ehrmann BM, Allarà M, Lawrence L, Ligresti A, Minutolo F, Saccomanni G, Sharir H, Macchia M, Di Marzo V, Abood ME, Reggio PH, Manera C. J Med Chem 57 8777-8791 (2014)
  85. Crystal structure of the endogenous agonist-bound prostanoid receptor EP3. Morimoto K, Suno R, Hotta Y, Yamashita K, Hirata K, Yamamoto M, Narumiya S, Iwata S, Kobayashi T. Nat Chem Biol 15 8-10 (2019)
  86. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. Sung YM, Wilkins AD, Rodriguez GJ, Wensel TG, Lichtarge O. Proc Natl Acad Sci U S A 113 3539-3544 (2016)
  87. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL. J Neurosci 34 13336-13348 (2014)
  88. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network. Valentin-Hansen L, Frimurer TM, Mokrosinski J, Holliday ND, Schwartz TW. J Biol Chem 290 24495-24508 (2015)
  89. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Marelja Z, Leimkühler S, Missirlis F. Front Physiol 9 50 (2018)
  90. Ligand chain length drives activation of lipid G protein-coupled receptors. Troupiotis-Tsaïlaki A, Zachmann J, González-Gil I, Gonzalez A, Ortega-Gutiérrez S, López-Rodríguez ML, Pardo L, Govaerts C. Sci Rep 7 2020 (2017)
  91. The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Boyé K, Pujol N, D Alves I, Chen YP, Daubon T, Daubon T, Lee YZ, Dedieu S, Constantin M, Bello L, Rossi M, Bjerkvig R, Sue SC, Bikfalvi A, Billottet C. Nat Commun 8 1571 (2017)
  92. Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin S, Engelhard M, Büldt G, Gordeliy V. J Mol Biol 412 591-600 (2011)
  93. Conformational activation of visual rhodopsin in native disc membranes. Malmerberg E, M Bovee-Geurts PH, Katona G, Deupi X, Arnlund D, Wickstrand C, Johansson LC, Westenhoff S, Nazarenko E, Schertler GF, Menzel A, de Grip WJ, Neutze R. Sci Signal 8 ra26 (2015)
  94. Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state. Schafer CT, Fay JF, Janz JM, Farrens DL. Proc Natl Acad Sci U S A 113 11961-11966 (2016)
  95. Origin of the low thermal isomerization rate of rhodopsin chromophore. Yanagawa M, Kojima K, Yamashita T, Imamoto Y, Matsuyama T, Nakanishi K, Yamano Y, Wada A, Sako Y, Shichida Y. Sci Rep 5 11081 (2015)
  96. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin. Hill J, Enbody ED, Pettersson ME, Sprehn CG, Bekkevold D, Folkvord A, Laikre L, Kleinau G, Scheerer P, Andersson L. Proc Natl Acad Sci U S A 116 18473-18478 (2019)
  97. Structural dynamics and thermostabilization of neurotensin receptor 1. Lee S, Bhattacharya S, Tate CG, Grisshammer R, Vaidehi N. J Phys Chem B 119 4917-4928 (2015)
  98. Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X, Yan EC, Standfuss J. EMBO Rep 17 1431-1440 (2016)
  99. The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. Valentin-Hansen L, Groenen M, Nygaard R, Frimurer TM, Holliday ND, Schwartz TW. J Biol Chem 287 31973-31982 (2012)
  100. Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, Nogly P, Schertler GFX, Lesca E. Proc Natl Acad Sci U S A 116 14547-14556 (2019)
  101. Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Kouyama T, Kawaguchi H, Nakanishi T, Kubo H, Murakami M. Biophys J 108 2680-2690 (2015)
  102. Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Peterhans C, Lally CC, Ostermaier MK, Sommer ME, Standfuss J. Sci Rep 6 28686 (2016)
  103. Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. Devine EL, Oprian DD, Theobald DL. Proc Natl Acad Sci U S A 110 13351-13355 (2013)
  104. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, Hurst DP, Pitman MC, Song ZH, Reggio PH. J Biol Chem 289 20259-20272 (2014)
  105. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor. Takezako T, Unal H, Karnik SS, Node K. Mol Pharmacol 88 488-501 (2015)
  106. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America. Hauser FE, Ilves KL, Schott RK, Castiglione GM, López-Fernández H, Chang BSW. Mol Biol Evol 34 2650-2664 (2017)
  107. Molecular basis for binding and subtype selectivity of 1,4-benzodiazepine antagonist ligands of the cholecystokinin receptor. Cawston EE, Lam PC, Harikumar KG, Dong M, Ball AM, Augustine ML, Akgün E, Portoghese PS, Orry A, Abagyan R, Sexton PM, Miller LJ. J Biol Chem 287 18618-18635 (2012)
  108. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, Shiraishi Y, Ueda T, Shimada I. Sci Adv 6 eaay8544 (2020)
  109. Conformational selection and equilibrium governs the ability of retinals to bind opsin. Schafer CT, Farrens DL. J Biol Chem 290 4304-4318 (2015)
  110. Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein. Maeda S, Sun D, Singhal A, Foggetta M, Schmid G, Standfuss J, Hennig M, Dawson RJ, Veprintsev DB, Schertler GF. PLoS One 9 e98714 (2014)
  111. Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa. Herrera-Hernández MG, Ramon E, Lupala CS, Tena-Campos M, Pérez JJ, Garriga P. Sci Rep 7 11167 (2017)
  112. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. Shim JY, Bertalovitz AC, Kendall DA. J Biol Chem 286 33422-33435 (2011)
  113. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Ghosh A, Sonavane U, Joshi R. Comput Biol Chem 48 29-39 (2014)
  114. Preparation of an activated rhodopsin/transducin complex using a constitutively active mutant of rhodopsin. Xie G, D'Antona AM, Edwards PC, Fransen M, Standfuss J, Schertler GF, Oprian DD. Biochemistry 50 10399-10407 (2011)
  115. Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. Bruzzese A, Dalton JAR, Giraldo J. PLoS Comput Biol 16 e1007818 (2020)
  116. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Salmas RE, Yurtsever M, Durdagi S. Sci Rep 5 13180 (2015)
  117. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Kimata N, Pope A, Eilers M, Opefi CA, Ziliox M, Hirshfeld A, Zaitseva E, Vogel R, Sheves M, Reeves PJ, Smith SO. Nat Commun 7 12683 (2016)
  118. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness. Kawamura S, Colozo AT, Ge L, Müller DJ, Park PS. J Biol Chem 287 21826-21835 (2012)
  119. Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Heyder NA, Kleinau G, Speck D, Schmidt A, Paisdzior S, Szczepek M, Bauer B, Koch A, Gallandi M, Kwiatkowski D, Bürger J, Mielke T, Beck-Sickinger AG, Hildebrand PW, Spahn CMT, Hilger D, Schacherl M, Biebermann H, Hilal T, Kühnen P, Kobilka BK, Scheerer P. Cell Res 31 1176-1189 (2021)
  120. An all-trans-retinal-binding opsin peropsin as a potential dark-active and light-inactivated G protein-coupled receptor. Nagata T, Koyanagi M, Lucas R, Terakita A. Sci Rep 8 3535 (2018)
  121. The role of Cysteine 6.47 in class A GPCRs. Olivella M, Caltabiano G, Cordomí A. BMC Struct Biol 13 3 (2013)
  122. Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid. Sánchez-Martín MJ, Ramon E, Torrent-Burgués J, Garriga P. Chembiochem 14 639-644 (2013)
  123. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. Gandhimathi A, Sowdhamini R. J Biomol Struct Dyn 34 952-970 (2016)
  124. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. Biochemistry 57 5188-5201 (2018)
  125. Deconstructing activation events in rhodopsin. Laricheva EN, Arora K, Knight JL, Brooks CL. J Am Chem Soc 135 10906-10909 (2013)
  126. Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Senapati S, Poma AB, Cieplak M, Filipek S, Park PSH. Anal Chem 91 7226-7235 (2019)
  127. Identifying ligand binding conformations of the β2-adrenergic receptor by using its agonists as computational probes. Isin B, Estiu G, Wiest O, Oltvai ZN. PLoS One 7 e50186 (2012)
  128. Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. Rivalta I, Nenov A, Weingart O, Cerullo G, Garavelli M, Mukamel S. J Phys Chem B 118 8396-8405 (2014)
  129. The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach. Woolley MJ, Watkins HA, Taddese B, Karakullukcu ZG, Barwell J, Smith KJ, Hay DL, Poyner DR, Reynolds CA, Conner AC. J R Soc Interface 10 20130589 (2013)
  130. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors. Woods KN, Pfeffer J, Dutta A, Klein-Seetharaman J. Sci Rep 6 37290 (2016)
  131. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features. Renault N, Laurent X, Farce A, El Bakali J, Mansouri R, Gervois P, Millet R, Desreumaux P, Furman C, Chavatte P. Chem Biol Drug Des 81 442-454 (2013)
  132. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution. Nosrati M, Berbasova T, Vasileiou C, Borhan B, Geiger JH. J Am Chem Soc 138 8802-8808 (2016)
  133. A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Padayatti PS, Wang L, Gupta S, Orban T, Sun W, Salom D, Jordan SR, Palczewski K, Chance MR. Mol Cell Proteomics 12 1259-1271 (2013)
  134. Evolution of nonspectral rhodopsin function at high altitudes. Castiglione GM, Hauser FE, Liao BS, Lujan NK, Van Nynatten A, Morrow JM, Schott RK, Bhattacharyya N, Dungan SZ, Chang BSW. Proc Natl Acad Sci U S A 114 7385-7390 (2017)
  135. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Gutierrez EA, Castiglione GM, Morrow JM, Schott RK, Loureiro LO, Lim BK, Chang BSW. Mol Biol Evol 35 2422-2434 (2018)
  136. Global fold of human cannabinoid type 2 receptor probed by solid-state 13C-, 15N-MAS NMR and molecular dynamics simulations. Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K. Proteins 82 452-465 (2014)
  137. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Seno K, Hayashi F. J Biol Chem 292 15321-15328 (2017)
  138. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding. Sinha A, Jones Brunette AM, Fay JF, Schafer CT, Farrens DL. Biochemistry 53 3294-3307 (2014)
  139. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Heyder N, Kleinau G, Szczepek M, Kwiatkowski D, Speck D, Soletto L, Cerdá-Reverter JM, Krude H, Kühnen P, Biebermann H, Scheerer P. Front Endocrinol (Lausanne) 10 515 (2019)
  140. Structural basis for ligand modulation of the CCR2 conformational landscape. Taylor BC, Lee CT, Amaro RE. Proc Natl Acad Sci U S A 116 8131-8136 (2019)
  141. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics. van Hazel I, Dungan SZ, Hauser FE, Morrow JM, Endler JA, Chang BS. Protein Sci 25 1308-1318 (2016)
  142. Engineering of an artificial light-modulated potassium channel. Caro LN, Moreau CJ, Estrada-Mondragón A, Ernst OP, Vivaudou M. PLoS One 7 e43766 (2012)
  143. Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Rivalta I, Nenov A, Garavelli M. Phys Chem Chem Phys 16 16865-16879 (2014)
  144. Molecular recognition of ketamine by a subset of olfactory G protein-coupled receptors. Ho J, Perez-Aguilar JM, Gao L, Saven JG, Matsunami H, Eckenhoff RG. Sci Signal 8 ra33 (2015)
  145. Structural Aspects of GPCR-G Protein Coupling. Chung KY. Toxicol Res 29 149-155 (2013)
  146. Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure? Jensen AS, Sparre-Ulrich AH, Davis-Poynter N, Rosenkilde MM. Adv Virol 2012 231813 (2012)
  147. Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I. Eilers M, Goncalves JA, Ahuja S, Kirkup C, Hirshfeld A, Simmerling C, Reeves PJ, Sheves M, Smith SO. J Phys Chem B 116 10477-10489 (2012)
  148. Structural-functional analysis of the third transmembrane domain of the corticotropin-releasing factor type 1 receptor: role in activation and allosteric antagonism. Spyridaki K, Matsoukas MT, Cordomi A, Gkountelias K, Papadokostaki M, Mavromoustakos T, Logothetis DE, Margioris AN, Pardo L, Liapakis G. J Biol Chem 289 18966-18977 (2014)
  149. Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin. Lobysheva E, Taylor CM, Marshall GR, Kisselev OG. Exp Eye Res 170 51-57 (2018)
  150. The counterion-retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Nagata T, Koyanagi M, Tsukamoto H, Mutt E, Schertler GFX, Deupi X, Terakita A. Commun Biol 2 180 (2019)
  151. Aptamer-functionalized hydrogel for self-programmed protein release via sequential photoreaction and hybridization. Lai J, Jiang P, Gaddes ER, Zhao N, Abune L, Wang Y. Chem Mater 29 5850-5857 (2017)
  152. Design and development of stapled transmembrane peptides that disrupt the activity of G-protein-coupled receptor oligomers. Botta J, Bibic L, Killoran P, McCormick PJ, Howell LA. J Biol Chem 294 16587-16603 (2019)
  153. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. Gao Y, Westfield G, Erickson JW, Cerione RA, Skiniotis G, Ramachandran S. J Biol Chem 292 14280-14289 (2017)
  154. Methods for the Development of In Silico GPCR Models. Morales P, Hurst DP, Reggio PH. Methods Enzymol 593 405-448 (2017)
  155. SuperBiHelix method for predicting the pleiotropic ensemble of G-protein-coupled receptor conformations. Bray JK, Abrol R, Goddard WA, Trzaskowski B, Scott CE. Proc Natl Acad Sci U S A 111 E72-8 (2014)
  156. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BSW. FEBS Lett 591 1720-1731 (2017)
  157. Characterization of the simultaneous decay kinetics of metarhodopsin states II and III in rhodopsin by solution-state NMR spectroscopy. Stehle J, Silvers R, Werner K, Chatterjee D, Gande S, Scholz F, Dutta A, Wachtveitl J, Klein-Seetharaman J, Schwalbe H. Angew Chem Int Ed Engl 53 2078-2084 (2014)
  158. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H. PLoS One 9 e91323 (2014)
  159. Crucial positively charged residues for ligand activation of the GPR35 receptor. Zhao P, Lane TR, Gao HG, Hurst DP, Kotsikorou E, Le L, Brailoiu E, Reggio PH, Abood ME. J Biol Chem 289 3625-3638 (2014)
  160. Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. Mathew E, Ding FX, Naider F, Dumont ME. Protein Eng Des Sel 26 59-71 (2013)
  161. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures. Lans I, Dalton JAR, Giraldo J. J Struct Biol 192 545-553 (2015)
  162. Structural biology: snapshot of a signalling complex. Schwartz TW, Sakmar TP. Nature 477 540-541 (2011)
  163. The extreme C-terminal region of Gαs differentially couples to the luteinizing hormone and beta2-adrenergic receptors. DeMars G, Fanelli F, Puett D. Mol Endocrinol 25 1416-1430 (2011)
  164. A Usual G-Protein-Coupled Receptor in Unusual Membranes. Chawla U, Jiang Y, Zheng W, Kuang L, Perera SM, Pitman MC, Brown MF, Liang H. Angew Chem Int Ed Engl 55 588-592 (2016)
  165. Activation biosensor for G protein-coupled receptors: a FRET-based m1 muscarinic activation sensor that regulates G(q). Chang S, Ross EM. PLoS One 7 e45651 (2012)
  166. Analyses of the effects of Gq protein on the activated states of the muscarinic M3 receptor and the purinergic P2Y1 receptor. Tateyama M, Kubo Y. Physiol Rep 1 e00134 (2013)
  167. Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base. Liu J, Liu MY, Fu L, Zhu GA, Yan ECY. J Biol Chem 286 38408-38416 (2011)
  168. Functional elements of the gastric inhibitory polypeptide receptor: Comparison between secretin- and rhodopsin-like G protein-coupled receptors. Cordomí A, Ismail S, Matsoukas MT, Escrieut C, Gherardi MJ, Pardo L, Fourmy D. Biochem Pharmacol 96 237-246 (2015)
  169. Glutamate acts as a partial inverse agonist to metabotropic glutamate receptor with a single amino acid mutation in the transmembrane domain. Yanagawa M, Yamashita T, Shichida Y. J Biol Chem 288 9593-9601 (2013)
  170. Quasi-elastic Neutron Scattering Reveals Ligand-Induced Protein Dynamics of a G-Protein-Coupled Receptor. Shrestha UR, Perera SMDC, Bhowmik D, Chawla U, Mamontov E, Brown MF, Chu XQ. J Phys Chem Lett 7 4130-4136 (2016)
  171. The G protein-coupled receptor rhodopsin: a historical perspective. Hofmann L, Palczewski K. Methods Mol Biol 1271 3-18 (2015)
  172. The N-terminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via G-protein. Kawasaki T, Saka T, Mine S, Mizohata E, Inoue T, Matsumura H, Sato T. FEBS Lett 589 1136-1142 (2015)
  173. A Strategy Combining Differential Low-Throughput Screening and Virtual Screening (DLS-VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P. Mol Inform 32 213-229 (2013)
  174. Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion. de Voux A, Chan MC, Folefoc AT, Madziva MT, Flanagan CA. PLoS One 8 e54532 (2013)
  175. Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering. Imamoto Y, Kojima K, Oka T, Maeda R, Shichida Y. Photochem Photobiol Sci 14 1965-1973 (2015)
  176. Selectivity in the Use of Gi/o Proteins Is Determined by the DRF Motif in CXCR6 and Is Cell-Type Specific. Singh SP, Foley JF, Zhang HH, Hurt DE, Richards JL, Smith CS, Liao F, Farber JM. Mol Pharmacol 88 894-910 (2015)
  177. Structural mechanisms of constitutive activation in the C5a receptors with mutations in the extracellular loops: molecular modeling study. Nikiforovich GV, Baranski TJ. Proteins 80 71-80 (2012)
  178. Activation of G-protein-coupled receptors in cell-derived plasma membranes supported on porous beads. Roizard S, Danelon C, Hassaïne G, Piguet J, Schulze K, Hovius R, Tampé R, Vogel H. J Am Chem Soc 133 16868-16874 (2011)
  179. Apo-Opsin Exists in Equilibrium Between a Predominant Inactive and a Rare Highly Active State. Sato S, Jastrzebska B, Engel A, Palczewski K, Kefalov VJ. J Neurosci 39 212-223 (2019)
  180. Classification of Protein Structure Classes on Flexible Neutral Tree. Bao W, Wang D, Chen Y. IEEE/ACM Trans Comput Biol Bioinform 14 1122-1133 (2017)
  181. Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin. Murakami M, Kouyama T. PLoS One 10 e0126970 (2015)
  182. Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y1 Receptor. Li Y, Yin C, Liu P, Li D, Lin J. Sci Rep 7 13764 (2017)
  183. Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy. Fried SDE, Lewis JW, Szundi I, Martinez-Mayorga K, Mahalingam M, Vogel R, Kliger DS, Brown MF. Biophys J 120 440-452 (2021)
  184. Retinal Conformation Changes Rhodopsin's Dynamic Ensemble. Leioatts N, Romo TD, Danial SA, Grossfield A. Biophys J 109 608-617 (2015)
  185. Letter Retinal Flip in Rhodopsin Activation? Feng J, Brown MF, Mertz B. Biophys J 108 2767-2770 (2015)
  186. Single-molecule observation of the ligand-induced population shift of rhodopsin, a G-protein-coupled receptor. Maeda R, Hiroshima M, Yamashita T, Wada A, Nishimura S, Sako Y, Shichida Y, Imamoto Y. Biophys J 106 915-924 (2014)
  187. Specificity of the chromophore-binding site in human cone opsins. Katayama K, Gulati S, Ortega JT, Alexander NS, Sun W, Shenouda MM, Palczewski K, Jastrzebska B. J Biol Chem 294 6082-6093 (2019)
  188. Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Hauser FE, Schott RK, Castiglione GM, Van Nynatten A, Kosyakov A, Tang PL, Gow DA, Chang BS. Vis Neurosci 33 e002 (2016)
  189. Graph analysis of β2 adrenergic receptor structures: a "social network" of GPCR residues. Sheftel S, Muratore KE, Black M, Costanzi S. In Silico Pharmacol 1 16 (2013)
  190. Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Hofmann L, Alexander NS, Sun W, Zhang J, Orban T, Palczewski K. Biochemistry 56 2338-2348 (2017)
  191. Influence of Arrestin on the Photodecay of Bovine Rhodopsin. Chatterjee D, Eckert CE, Slavov C, Saxena K, Fürtig B, Sanders CR, Gurevich VV, Wachtveitl J, Schwalbe H. Angew Chem Int Ed Engl 54 13555-13560 (2015)
  192. Ligand modulation of the conformational dynamics of the A2A adenosine receptor revealed by single-molecule fluorescence. Fernandes DD, Neale C, Gomes GW, Li Y, Malik A, Pandey A, Orazietti AP, Wang X, Ye L, Scott Prosser R, Gradinaru CC. Sci Rep 11 5910 (2021)
  193. Protein Sequence and Membrane Lipid Roles in the Activation Kinetics of Bovine and Human Rhodopsins. Szundi I, Funatogawa C, Guo Y, Yan ECY, Kliger DS. Biophys J 113 1934-1944 (2017)
  194. Revisiting the homology modeling of G-protein coupled receptors: β1-adrenoceptor as an example. Zhu M, Li M. Mol Biosyst 8 1686-1693 (2012)
  195. Structural insights into human GPCR protein OA1: a computational perspective. Ghosh A, Sonavane U, Andhirka SK, Aradhyam GK, Joshi R. J Mol Model 18 2117-2133 (2012)
  196. The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs. Sandoval A, Eichler S, Madathil S, Reeves PJ, Fahmy K, Böckmann RA. Biophys J 111 79-89 (2016)
  197. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors. Moreau CJ, Revilloud J, Caro LN, Dupuis JP, Trouchet A, Estrada-Mondragón A, Nieścierowicz K, Sapay N, Crouzy S, Vivaudou M. Sci Rep 7 41154 (2017)
  198. Computational methods for the discovery of mood disorder therapies. López-Vallejo F, Peppard TL, Medina-Franco JL, Martínez-Mayorga K. Expert Opin Drug Discov 6 1227-1245 (2011)
  199. Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and Distinct Roles through a Rapid Initial Interaction with Specific G Proteins. Sato T. Int J Mol Sci 20 E1752 (2019)
  200. Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Fu L, Li Q, Yan G, Zhou D, Crittenden JC. Biotechnol Biofuels 12 121 (2019)
  201. Comment Structural biology: Active arrestin proteins crystallized. Borshchevskiy V, Büldt G. Nature 497 45-46 (2013)
  202. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Van Nynatten A, Janzen FH, Brochu K, Maldonado-Ocampo JA, Crampton WGR, Chang BSW, Lovejoy NR. Proc Biol Sci 286 20191182 (2019)
  203. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A. PLoS One 15 e0226123 (2020)
  204. Binding of rhodopsin and rhodopsin analogues to transducin, rhodopsin kinase and arrestin-1. Araujo NA, Sanz-Rodríguez CE, Bubis J. World J Biol Chem 5 254-268 (2014)
  205. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Dong SS, Goddard WA, Abrol R. Biophys J 110 2618-2629 (2016)
  206. Dynamics of bovine opsin bound to G-protein fragments. Sugihara M, Suwa M, Bondar AN. J Struct Biol 188 79-86 (2014)
  207. Experimental and Computational Modeling of H-Bonded Arginine-Tyrosine Groupings in Aprotic Environments. Banyikwa AT, Goos A, Kiemle DJ, Foulkes MAC, Braiman MS. ACS Omega 2 5641-5659 (2017)
  208. FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin. Tian H, Gunnison KM, Kazmi MA, Sakmar TP, Huber T. iScience 25 104060 (2022)
  209. Hydration-mediated G-protein-coupled receptor activation. Fried SDE, Hewage KSK, Eitel AR, Struts AV, Weerasinghe N, Perera SMDC, Brown MF. Proc Natl Acad Sci U S A 119 e2117349119 (2022)
  210. Light-induced difference FTIR spectroscopy of primate blue-sensitive visual pigment at 163 K. Hanai S, Katayama K, Imai H, Kandori H. Biophys Physicobiol 18 40-49 (2021)
  211. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives. Kageyama Y, Ikegami T, Kurokome Y, Takeda S. Chemistry 22 8669-8675 (2016)
  212. Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Lynch DL, Hurst DP, Shore DM, Pitman MC, Reggio PH. Methods Enzymol 593 449-490 (2017)
  213. SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY. Struts AV, Barmasov AV, Brown MF. Opt Spectrosc 118 711-717 (2015)
  214. Water permeation through the internal water pathway in activated GPCR rhodopsin. Tomobe K, Yamamoto E, Kholmurodov K, Yasuoka K. PLoS One 12 e0176876 (2017)
  215. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Basavanhally T, Fonseca R, Uversky VN. Proteomics 18 e1800307 (2018)
  216. Classification of rhodopsin structures by modern methods of structural bioinformatics. Novikov GV, Sivozhelezov VS, Shebanova AS, Shaitan KV. Biochemistry (Mosc) 77 435-443 (2012)
  217. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor. Scott CE, Ahn KH, Graf ST, Goddard WA, Kendall DA, Abrol R. J Chem Inf Model 56 201-212 (2016)
  218. Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin. Razzaghi N, Fernandez-Gonzalez P, Mas-Sanchez A, Vila-Julià G, Perez JJ, Garriga P. Molecules 26 3032 (2021)
  219. Explaining the mobility of retinal in activated rhodopsin and opsin. Mertz B, Feng J, Corcoran C, Neeley B. Photochem Photobiol Sci 14 1952-1964 (2015)
  220. Insight into the chromophore of rhodopsin and its Meta-II photointermediate by 19F solid-state NMR and chemical shift tensor calculations. Brinkmann A, Sternberg U, Bovee-Geurts PHM, Fernández Fernández I, Lugtenburg J, Kentgens APM, DeGrip WJ. Phys Chem Chem Phys 20 30174-30188 (2018)
  221. Interaction of Synthetic Cannabinoid Receptor Agonists with Cannabinoid Receptor I: Insights into Activation Molecular Mechanism. Gavryushov S, Bashilov A, Cherashev-Tumanov KV, Kuzmich NN, Burykina TI, Izotov BN. Int J Mol Sci 24 14874 (2023)
  222. Ligand-induced action of the W2866.48 rotamer toggle switch in the β2-adrenergic receptor. Plazinska A, Plazinski W, Luchowski R, Wnorowski A, Grudzinski W, Gruszecki WI. Phys Chem Chem Phys 20 581-594 (2017)
  223. Powdered G-Protein-Coupled Receptors. Perera SMDC, Chawla U, Brown MF. J Phys Chem Lett 7 4230-4235 (2016)
  224. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates. Devine EL, Theobald DL, Oprian DD. Biochemistry 55 4864-4870 (2016)
  225. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex. Lomonosova E, Kolesnikov AV, Kefalov VJ, Kisselev OG. Invest Ophthalmol Vis Sci 53 1225-1233 (2012)
  226. Structural biology: Arresting developments in receptor signalling. Benovic JL. Nature 523 538-539 (2015)
  227. Structure of full-length TSH receptor in complex with antibody K1-70™. Núñez Miguel R, Sanders P, Allen L, Evans M, Holly M, Johnson W, Sullivan A, Sanders J, Furmaniak J, Rees Smith B. J Mol Endocrinol 70 e220120 (2023)
  228. The Gluopsins: Opsins without the Retinal Binding Lysine. Gühmann M, Porter ML, Bok MJ. Cells 11 2441 (2022)
  229. The hydrophobic amino acid cluster at the cytoplasmic end of transmembrane helix III modulates the coupling of the β(1)-adrenergic receptor to G(s). Hajjhussein H, Gardner LA, Fujii N, Anderson NM, Bahouth SW. J Recept Signal Transduct Res 33 79-88 (2013)
  230. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. Li Y, Cui ZJ. ACS Pharmacol Transl Sci 5 539-547 (2022)
  231. Activation and signaling mechanism revealed by GPR119-Gs complex structures. Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Nat Commun 13 7033 (2022)
  232. CONDENSED-MATTER SPECTROSCOPY SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. II. MAGNETIC RESONANCE METHODS. Struts AV, Barmasov AV, Brown MF. Opt Spectrosc 120 286-293 (2016)
  233. Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment. Mizuno Y, Katayama K, Imai H, Kandori H. Biochemistry 61 2698-2708 (2022)
  234. Free energy calculations of the functional selectivity of 5-HT2B G protein-coupled receptor. Peters BL, Deng J, Ferguson AL. PLoS One 15 e0243313 (2020)
  235. Functional optimization of light-activatable Opto-GPCRs: Illuminating the importance of the proximal C-terminus in G-protein specificity. Leemann S, Kleinlogel S. Front Cell Dev Biol 11 1053022 (2023)
  236. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. eNeuro 10 ENEURO.0330-22.2023 (2023)
  237. Investigating the mechanism of photoisomerization in jellyfish rhodopsin with the counterion at an atypical position. Inukai S, Katayama K, Koyanagi M, Terakita A, Kandori H. J Biol Chem 299 104726 (2023)
  238. Light Dynamics of the Retinal-Disease-Relevant G90D Bovine Rhodopsin Mutant. Kubatova N, Mao J, Eckert CE, Saxena K, Gande SL, Wachtveitl J, Glaubitz C, Schwalbe H. Angew Chem Int Ed Engl 59 15656-15664 (2020)
  239. New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Herrera-Hernández MG, Razzaghi N, Fernandez-Gonzalez P, Bosch-Presegué L, Vila-Julià G, Pérez JJ, Garriga P. Cell Mol Life Sci 79 58 (2022)
  240. Retinal Flips the Script. Lyman E. Biophys J 108 2754 (2015)
  241. Role of Monomer/Tetramer Equilibrium of Rod Visual Arrestin in the Interaction with Phosphorylated Rhodopsin. Imamoto Y, Kojima K, Maeda R, Shichida Y, Oka T. Int J Mol Sci 24 4963 (2023)
  242. Strategic Screening and Characterization of the Visual GPCR-mini-G Protein Signaling Complex for Successful Crystallization. Pamula F, Mühle J, Blanc A, Nehmé R, Edwards PC, Tate CG, Tsai CJ. J Vis Exp (2020)
  243. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Nat Commun 14 5209 (2023)
  244. The role of the non-covalent β-ionone-ring binding site in rhodopsin: historical and physiological perspective. Matsumoto H, Iwasa T, Yoshizawa T. Photochem Photobiol Sci 14 1932-1940 (2015)